Non-Perturbative Topological Recursion with an Application to Knot Invariants

Roderic Guigo Corominas

12-13-2018

Boston University

Table of contents

1. CEO Topological Recursion
2. Quantum Curves
3. Application to Knot invariants
4. Open Problems

CEO Topological Recursion

Main Idea

Spectral Curve Σ
Topological Recursion
Invariants $\omega_{g, n}(\Sigma)$.

Spectral Curve

A spectral curve is a triple $C=(\Sigma, x, y)$ where Σ is a compact genus g Riemann Surface with a choice of a symplectic basis $\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)$, and x and y are two meromorphic functions with distinct critical points.

Assume x and y satisfy a polynomial equation

$$
P(x, y)=0 .
$$

The degree of a spectral curve is the degree of $x: \Sigma \rightarrow \mathbb{C P}^{1}$.
The ramification points $R=\left(a_{1}, \ldots, a_{r}\right)$ are points that satisfy $d x\left(a_{i}\right)=0$. Let $\left\langle\sigma_{a}\right\rangle$ the local deck transformation group.

Fundamental differentials

Definition

The fundamental bidifferential of second kind is the unique symmetric bidifferential $B\left(z_{1}, z_{2}\right)$ with poles of order 2 along the diagonal $z_{1}=z_{2}$ and that it is normalized on \mathcal{A}_{i}-cycles:

$$
\oint_{z_{1} \in \mathcal{A}_{i}} B\left(z_{1}, z_{2}\right)=0
$$

Definition

Given two points $a, b \in \Sigma$, the fundamental differential of third kind is the unique meromorphic one-form $\omega_{b}^{a}(z)$ with poles at $z=a$ and $z=b$ and residues 1 and -1 respectively, and that is normalized on the \mathcal{A}_{i}-cycles:

$$
\oint_{z \in \mathcal{A}_{i}} \omega_{b}^{a}(z)=0
$$

Recursive Formula

With this ingredients, set

- Disk amplitude: $\omega_{0,1}\left(z_{1}\right)=y\left(z_{1}\right) d x\left(z_{1}\right)$.
- Cylinder amplitude: $\omega_{0,2}\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right)$.
- Recursion kernel: $K_{a}\left(z_{0}, z\right)=\frac{\omega^{z-\alpha}\left(z_{0}\right)}{\left(y(z)-y\left(\sigma_{a}(z)\right)\right) d x(z)}$.

Definition (simple ramification)

Define the correlators $\omega_{g, n+1}\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ via the following formula:
$\omega_{g, n+1}\left(z_{0}, \ldots, z_{n}\right)=$
$\sum_{a \in R} \operatorname{Res}_{z=a} K_{a}\left(z_{0}, z\right)\left(\begin{array}{c}\left.\omega_{g-1, n+2}\left(z, \sigma(z), z_{1}, \ldots, z_{n}\right)+\sum_{\substack{h+h^{\prime}=g \\ l \amalg t=\left\{z_{1}, \ldots, z_{n}\right\}}} \omega_{h, 1+|I|}\left(z, z_{l}\right) \omega_{h^{\prime}, 1+|J|}\left(\sigma(z), z_{J}\right)\right) .\end{array}\right.$.

Recursion on the Euler Characteristic $\chi(X)=2-2 g-n$:

$$
\chi(L H S)=1-2 g-n<2-2 g-n=\chi(R H S) .
$$

Properties

From $\omega_{g, 1}(z)$ define the Free Energies

$$
F_{g}=\frac{1}{2 g-2} \sum_{a \in R} \operatorname{Reses}_{z=a} \Phi(z) \omega_{g, 1}(z) \in \mathbb{C} .
$$

Properties

The polydifferentials $\omega_{g, n}\left(z_{1}, \ldots, z_{n}\right)$ satisfy the following properties:

- Symmetry: $\omega_{g, n}\left(z_{1}, \ldots, z_{n}\right)=\omega_{g, n}\left(z_{\sigma_{1}}, \ldots, z_{\sigma_{n}}\right)$.
- Poles at the ramification points with vanishing residues.
- Symplectic invariance: F_{g} invariant under Φ preserving $d x \wedge d y$.
- Modular properties: F_{g} are almost modular forms.

Example: Intersection Numbers

- Kontsevich-Witten: $\left(\mathbb{C P}^{1}, x(z)=z^{2}, y(z)=z\right)$.

$$
\begin{gathered}
\omega_{g, n}\left(z_{1}, \ldots, z_{n}\right)=2^{2 g-2+n} \sum_{d_{1}, \ldots, d_{n}} \prod_{i=1}^{n} \frac{\left(2 d_{i}+1\right)!!d z_{i}}{z_{i}^{2 d_{i}+2}}\left\langle\tau_{d_{1}} \tau_{d_{2}} \ldots \tau_{d_{n}}\right\rangle_{g} \\
\left\langle\tau_{d_{1}} \tau_{d_{2}} \ldots \tau_{d_{n}}\right\rangle_{g}=\int_{\overline{\mathcal{M}}_{g}, n} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}} .
\end{gathered}
$$

- Weil-Peterson Volumes: $\left(\mathbb{C P}^{1}, x(z)=z^{2}, y(z)=\frac{1}{4 \pi} \sin (2 \pi z)\right)$.
- Hurwitz Numbers: $\left(\mathbb{C P}^{1}, x(z)=\ln (z)-z, y(z)=z\right)$.

Mirzakhani's relations and ELSV formulae relate these examples to intersection theory.

More Examples

More generally:

Theorem (Eynard)

Given a compact spectral curve $C=(\Sigma, x, y)$ with $g(\Sigma)=0$ and with simple ramification, there exists a tautological class $\Lambda(C) \in H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ such that

$$
\omega_{g, n}\left(z_{1}, \ldots, z_{n}\right)=\sum_{d_{1}, \ldots, d_{n}} \int_{\overline{\mathcal{M}}_{g}, n} \Lambda(S) \prod_{i=1}^{n} \psi^{d_{i}}
$$

Can be interpreted as the Givental Group action.
Total ancestor potential of a Semisimple CohFT.

Tau function \& Integrable Hierarchies

Theorem (Kontsevich-Witten)

Generating function of ψ-classes intersections is a τ-function of the KdV hierarchy:

$$
\exp \left(\sum_{n \geq 0} \sum_{d_{1}, \ldots, d_{n}}\left\langle\tau_{d_{1}} \ldots \tau_{d_{n}}\right\rangle_{g} \frac{t_{d_{1}} \cdots t_{d_{n}}}{n!}\right)
$$

- How do we construct a generating function from $\omega_{g, n}$?
- How do we construct a differential operator that annihilates such a generating function?

Quantum Curves

Quantizing Spectral Curve

Consider the generating function of free energies

$$
Z=\exp \left(\sum_{g \geq 0} \hbar^{2 g-2} F_{g}\right) .
$$

The wave function is obtained via a Schlesinger transform

$$
\psi_{\mathrm{P}}(z)=\frac{Z\left[y d x \rightarrow y d x+\hbar \omega_{a}^{z}\right]}{Z[y d x]}=\exp \left(\frac{1}{\hbar^{2}} \sum_{k \geq 0} \hbar^{k} S_{k}(z)\right) .
$$

Does there exist a differential operator $\hat{P}(\hat{x}, \hat{y} ; \hbar)$ such that

$$
\hat{P}(\hat{x}, \hat{y} ; \hbar) \cdot \psi_{\mathrm{P}}(z)=0 ?
$$

Quantum Curves

A Quantum Curve \hat{P} of a Spectral Curve C with defining polynomial P is a differential operator in x such that, after normal ordering, it takes the form

$$
\hat{P}(\hat{x}, \hat{y} ; \hbar)=P(\hat{x}, \hat{y})+\sum_{n \geq 1} \hbar^{n} P_{n}(\hat{x}, \hat{y})
$$

where $\hat{x}=x, \hat{y}=\hbar \frac{d}{d x}$. If $P(x, y)$ is order d in y then P_{n} are polynomials in \hat{x} and \hat{y} of degree at most $d-1$ in \hat{y}.

A quantum curve is simple if the sum is finite.

Genus Zero: Perturbative

Theorem (Bouchard-Eynard)

Given a compact spectral curve $C=(\Sigma, x, y)$ of $g(\Sigma)=0$, then there exists a simple quantum curve annihilating the wave function:

$$
\hat{P}(\hat{x}, \hat{y} ; \hbar) \cdot \psi_{P}(z)=0 .
$$

For KdV-r: $\left(\mathbb{C P}^{1}, x(z)=z^{r}, y(z)=z\right)$, the quantum curve is

$$
\left(\hbar^{r} \frac{d^{r}}{d x^{r}}-x\right) \cdot \psi_{\mathrm{P}}(z)=0
$$

For spectral cureves of higher genus, same methods lead to non-simple quantum curves with non-polynomial expressions for P_{n}.

Genus One: Non-perturbative

Want a partition function that is modular invariant and background independent.

Non-perturbative partition function:

$$
\begin{aligned}
Z_{N P} & =\exp \left(\sum_{g \geq 0} \hbar^{2 g-2} F_{g}\right) \\
& \times\left(\sum_{r \geq 0} \frac{1}{r!} \sum_{\substack{h_{j}, d_{j} \geq 0 \\
2 h_{j}+d_{j}-2>0}} \hbar^{\sum 2 h_{j}+d_{j}-2} \prod_{j=1}^{r}\left(\frac{F_{h_{j}}^{\left(d_{j}\right)}}{(2 \pi i)^{d_{j} d_{j}!}}\right) \nabla\left(\sum d_{j}\right) \vartheta_{11}\left(\zeta_{\hbar}\right)\right) .
\end{aligned}
$$

Where
$\zeta_{\hbar}=\frac{1}{2 \pi i \hbar} \int_{\mathcal{B}-\tau \mathcal{A}} y d x, \quad F_{h}^{(d)}=\frac{1}{h!} \frac{1}{(2 \pi i)^{d} d!} \oint_{\mathcal{B}} \ldots \oint_{\mathcal{B}} \omega_{h, d}\left(z_{1}, \ldots, z_{d}\right)$.

Non-Perturbative Wave Function

The corresponding wave function:

$$
\psi_{\mathrm{NP}}(z)=\frac{Z_{\mathrm{NP}}\left[y d x \rightarrow y d x+\hbar \omega_{a}^{z}\right]}{Z_{\mathrm{NP}}[y d x]} .
$$

The wave function $\psi_{\mathrm{NP}}(z)$ satisfies the quantization condition if it has an asymptotic expansion as $\hbar \rightarrow 0$. In such case we define S_{k} via:

$$
\psi_{\mathrm{NP}}(z)=\exp \left(\frac{1}{\hbar^{2}} \sum_{k \geq 0} \hbar^{k} S_{k}(z)\right) .
$$

Example

Consider the spectral curve $\left(\mathbb{C} / \Lambda, x(z)=\wp(z), y(z)=\wp^{\prime}(z)\right)$ with cycles $\mathcal{A}=[0,1]$ and $\mathcal{B}=[0, \tau]$. It satisfies the Weierstrass equation

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

- If $g_{2}=0$ then $\zeta_{\hbar}=0$ and it satisfies the quantization condition.
- Quantum curve to $O\left(\hbar^{7}\right)$

$$
\hat{P}(\hat{x}, \hat{y})=\hbar^{2} \frac{d^{2}}{d x^{2}}-4\left(x^{3}-1\right)+\hbar^{2} \frac{x}{2^{2} 3}+\hbar^{4} \frac{1}{2^{6} 3^{2}} \frac{d}{d x}+\hbar^{4} \frac{x^{2}}{2^{8} 3^{3}}+\hbar^{6} \frac{x}{2^{12} 3^{4}} \frac{d}{d x} .
$$

- Closed expression not known, simplicity.

Application to Knot invariants

A-polynomial

Let $X=S^{3} \backslash \mathbb{K}$ be a knot complement. The representation variety $R\left(\pi_{1}(X)\right)$ is defined as the quotient

$$
R\left(\pi_{1}(X)\right)=\operatorname{Hom}\left(\pi_{1}(\mathbb{K}), \operatorname{SL}(2, \mathbb{C})\right) / \operatorname{SL}(2, \mathbb{C})
$$

Let $\mathfrak{l}, \mathfrak{m}$ be the generators of the boundary torus $\pi_{1}(\partial X) \cong \mathbb{Z} \times \mathbb{Z}$. Then the \mathbf{A}-polynomial is the defining polynomial of the algebraic variety in \mathbb{C}^{2} which is the image of the map

$$
\begin{aligned}
\chi: R\left(\pi_{1}(X)\right) & \rightarrow \mathbb{C} \times \mathbb{C} \\
\rho & \mapsto(m, l),
\end{aligned}
$$

for a representation ρ such that $\rho(\mathfrak{m})=\left(\begin{array}{cc}m & 1 \\ 0 & m^{-1}\end{array}\right), \rho(\mathfrak{l})=\left(\begin{array}{cc}l & 0 \\ t & I^{-1}\end{array}\right)$.

A-polynomial Spectral Curve

Given $X=S^{3} \backslash \mathbb{K}$ with A-polynomial $A_{\mathbb{K}}(m, I)=0$.

- A-polynomial curve has genus ≥ 1 (except $\mathbf{1 0}_{152}^{(1)}$ up to 8 crossings).
- It comes with two involutions $m \mapsto 1 / m$ and $/ \mapsto 1 / I$.

Spectral curve is $\left(C_{0}, \ln m, \ln /\right)$ where C_{0} is smooth birational to $A_{\mathbb{K}}(m, I)=0$.

Fact:

- If the involution $\iota:(m, I) \mapsto(m, 1 / I)$ satisfies $\iota_{*}=-$ id then $\zeta_{\hbar}=0$ and therefore $\left(C_{0}, \ln m, \ln /\right)$ satisfies the quantization condition.

Jones Polynomial

Let $J_{N}(\mathbb{K}, q)$ be the N-colored Jones polynomial of a knot $\mathbb{K} \subset S^{3}$.

Theorem (Garoufalidis-Le)

There exists an operator $\hat{\mathfrak{A}}_{\mathbb{K}} \in \mathbb{Z}\left[e^{\frac{\hbar}{2} \partial u}, e^{u}, e^{\hbar}\right]$ such that

$$
\hat{\mathfrak{A}}_{\mathbb{K}} \cdot J_{u / \hbar}\left(\mathbb{K}, q=e^{2 \hbar}\right)=0 .
$$

AJ Conjecture

In the limit $N \rightarrow \infty$, the operator $\hat{\mathfrak{A}}_{\mathbb{K}}$ and the A-polynomial coincide up to a factor.

$\hat{A}-T R$ Conjecture

Conjecture (Borot-Eynard)

- The non-perturbative TR wave function on the A-polynomial of a hyperbolic knot in \mathbb{S}^{3} is annihilated $\hat{\mathfrak{A}}_{\mathbb{K}}$.
- $J_{N}\left(\mathbb{K}, q=e^{2 \hbar}\right) \sim C_{\hbar} B(u) \psi_{N P}\left(z_{u}^{(\alpha)}\right)$

Checked up to $O\left(\hbar^{4}\right)$ for the figure eight knot and few other cases.

Open Problems

Open problems

- Quantum Curve Conjecture: Non-perturvative TR wave function is annihilated by a quantum curve.
- $\hat{A}-$ TR conjecture: Non-perturbative TR wave function of the A-polynomial of a hyperbolic knot computes the asymptotic expansion of its colored Jones polynomial.

Questions?

