Non-Perturbative Topological Recursion with an Application to Knot Invariants

Roderic Guigo Corominas

12-13-2018

Boston University

- 1. CEO Topological Recursion
- 2. Quantum Curves
- 3. Application to Knot invariants
- 4. Open Problems

CEO Topological Recursion

Spectral Curve Σ

Topological Recursion

Invariants $\omega_{g,n}(\Sigma)$.

 \rightarrow

A **spectral curve** is a triple $C = (\Sigma, x, y)$ where Σ is a compact genus gRiemann Surface with a choice of a symplectic basis (A_i, B_i) , and x and y are two meromorphic functions with distinct critical points.

Assume x and y satisfy a polynomial equation

$$P(x,y)=0.$$

The **degree** of a spectral curve is the degree of $x: \Sigma \to \mathbb{CP}^1$.

The **ramification points** $R = (a_1, \ldots, a_r)$ are points that satisfy $dx(a_i) = 0$. Let $\langle \sigma_a \rangle$ the local deck transformation group.

Fundamental differentials

Definition

The **fundamental bidifferential of second kind** is the unique symmetric bidifferential $B(z_1, z_2)$ with poles of order 2 along the diagonal $z_1 = z_2$ and that it is normalized on A_i -cycles:

$$\oint_{z_1\in \mathcal{A}_i} B(z_1,z_2)=0.$$

Definition

Given two points $a, b \in \Sigma$, the **fundamental differential of third kind** is the unique meromorphic one-form $\omega_b^a(z)$ with poles at z = a and z = b and residues 1 and -1 respectively, and that is normalized on the A_i -cycles:

$$\oint_{z\in\mathcal{A}_i}\omega_b^a(z)=0.$$

Recursive Formula

With this ingredients, set

- Disk amplitude: $\omega_{0,1}(z_1) = y(z_1)dx(z_1)$.
- Cylinder amplitude: $\omega_{0,2}(z_1, z_2) = B(z_1, z_2)$.
- Recursion kernel: $K_a(z_0, z) = \frac{\omega^{z-\alpha}(z_0)}{(y(z)-y(\sigma_a(z)))dx(z)}$.

Definition (simple ramification)

Define the correlators $\omega_{g,n+1}(z_0, z_1, \ldots, z_n)$ via the following formula:

$$\omega_{g,n+1}(z_0,\ldots,z_n) = \sum_{a\in R} \underset{z=a}{\operatorname{Res}} \mathcal{K}_a(z_0,z) \left(\omega_{g-1,n+2}(z,\sigma(z),z_1,\ldots,z_n) + \sum_{\substack{h+h'=g\\I \coprod J = \{z_1,\ldots,z_n\}}} \omega_{h,1+|I|}(z,z_I) \omega_{h',1+|J|}(\sigma(z),z_J) \right).$$

Recursion on the Euler Characteristic $\chi(X) = 2 - 2g - n$:

$$\chi(LHS) = 1 - 2g - n < 2 - 2g - n = \chi(RHS).$$

From $\omega_{g,1}(z)$ define the **Free Energies**

$$F_g = rac{1}{2g-2}\sum_{a\in R} \mathop{\mathrm{Res}}_{z=a} \Phi(z) \omega_{g,1}(z) \in \mathbb{C}.$$

Properties

The polydifferentials $\omega_{g,n}(z_1,\ldots,z_n)$ satisfy the following properties:

- Symmetry: $\omega_{g,n}(z_1,\ldots,z_n) = \omega_{g,n}(z_{\sigma_1},\ldots,z_{\sigma_n}).$
- Poles at the ramification points with vanishing residues.
- Symplectic invariance: F_g invariant under Φ preserving $dx \wedge dy$.
- Modular properties: F_g are almost modular forms.

Example: Intersection Numbers

• Kontsevich-Witten: $(\mathbb{CP}^1, x(z) = z^2, y(z) = z)$.

$$\omega_{g,n}(z_1,\ldots,z_n) = 2^{2g-2+n} \sum_{d_1,\ldots,d_n} \prod_{i=1}^n \frac{(2d_i+1)! \, d_{i}}{z_i^{2d_i+2}} \langle \tau_{d_1}\tau_{d_2}\ldots\tau_{d_n} \rangle_g$$

$$\langle \tau_{d_1} \tau_{d_2} \dots \tau_{d_n} \rangle_g = \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1} \cdots \psi_n^{d_n}.$$

- Weil-Peterson Volumes: $(\mathbb{CP}^1, x(z) = z^2, y(z) = \frac{1}{4\pi} \sin(2\pi z)).$
- Hurwitz Numbers: $(\mathbb{CP}^1, x(z) = \ln(z) z, y(z) = z)$.

Mirzakhani's relations and ELSV formulae relate these examples to intersection theory.

More generally:

Theorem (Eynard)

Given a compact spectral curve $C = (\Sigma, x, y)$ with $g(\Sigma) = 0$ and with simple ramification, there exists a tautological class $\Lambda(C) \in H^*(\overline{\mathcal{M}}_{g,n})$ such that

$$\omega_{g,n}(z_1,\ldots,z_n) = \sum_{d_1,\ldots,d_n} \int_{\overline{\mathcal{M}}_{g,n}} \Lambda(S) \prod_{i=1}^n \psi^{d_i}.$$

Can be interpreted as the Givental Group action.

Total ancestor potential of a Semisimple CohFT.

Theorem (Kontsevich-Witten)

Generating function of $\psi\text{-classes}$ intersections is a $\tau\text{-function}$ of the KdV hierarchy:

$$\exp\left(\sum_{n\geq 0}\sum_{d_1,\ldots,d_n}\langle \tau_{d_1}\ldots\tau_{d_n}\rangle_g\frac{t_{d_1}\cdots t_{d_n}}{n!}\right).$$

- How do we construct a generating function from $\omega_{g,n}$?
- How do we construct a differential operator that annihilates such a generating function?

Quantum Curves

Consider the generating function of free energies

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{2g-2} F_g\right).$$

The wave function is obtained via a Schlesinger transform

$$\psi_{\mathsf{P}}(z) = \frac{Z\left[ydx \to ydx + \hbar\omega_{\mathsf{a}}^{z}\right]}{Z\left[ydx\right]} = \exp\left(\frac{1}{\hbar^{2}}\sum_{k\geq 0}\hbar^{k}S_{k}(z)\right).$$

Does there exist a differential operator $\hat{P}(\hat{x}, \hat{y}; \hbar)$ such that

 $\hat{P}(\hat{x},\hat{y};\hbar)\cdot\psi_{\mathsf{P}}(z)=0?$

A **Quantum Curve** \hat{P} of a Spectral Curve *C* with defining polynomial *P* is a differential operator in *x* such that, after normal ordering, it takes the form

$$\hat{P}(\hat{x},\hat{y};\hbar)=P(\hat{x},\hat{y})+\sum_{n\geq 1}\hbar^{n}P_{n}(\hat{x},\hat{y}),$$

where $\hat{x} = x, \hat{y} = \hbar \frac{d}{dx}$. If P(x, y) is order d in y then P_n are polynomials in \hat{x} and \hat{y} of degree at most d - 1 in \hat{y} .

A quantum curve is **simple** if the sum is finite.

Theorem (Bouchard-Eynard)

Given a compact spectral curve $C = (\Sigma, x, y)$ of $g(\Sigma) = 0$, then there exists a simple quantum curve annihilating the wave function:

 $\hat{P}(\hat{x},\hat{y};\hbar)\cdot\psi_{\mathsf{P}}(z)=0.$

For KdV-*r*: $(\mathbb{CP}^1, x(z) = z^r, y(z) = z)$, the quantum curve is

$$\left(\hbar^r \frac{d^r}{dx^r} - x\right) \cdot \psi_{\mathsf{P}}(z) = 0.$$

For spectral cureves of higher genus, same methods lead to non-simple quantum curves with non-polynomial expressions for P_n .

Genus One: Non-perturbative

Want a partition function that is modular invariant and background independent.

Non-perturbative partition function:

$$Z_{\rm NP} = \exp\left(\sum_{g\geq 0} \hbar^{2g-2} F_g\right)$$
$$\times \left(\sum_{\substack{r\geq 0\\r\geq 0}} \frac{1}{r!} \sum_{\substack{h_j, d_j\geq 0\\2h_j+d_j-2>0}} \hbar^{\sum 2h_j+d_j-2} \prod_{j=1}^r \left(\frac{F_{h_j}^{(d_j)}}{(2\pi i)^{d_j} d_j!}\right) \nabla^{(\sum d_j)} \vartheta_{11}(\zeta_{\hbar})\right)$$

Where

$$\zeta_{\hbar} = \frac{1}{2\pi i \hbar} \int_{\mathcal{B}-\tau \mathcal{A}} y dx, \qquad F_{h}^{(d)} = \frac{1}{h!} \frac{1}{(2\pi i)^{d} d!} \oint_{\mathcal{B}} \dots \oint_{\mathcal{B}} \omega_{h,d}(z_{1}, \dots, z_{d}).$$

The corresponding wave function:

$$\psi_{\mathrm{NP}}(z) = rac{Z_{\mathrm{NP}}\left[ydx
ightarrow ydx + \hbar\omega_{a}^{z}
ight]}{Z_{\mathrm{NP}}\left[ydx
ight]}$$

The wave function $\psi_{NP}(z)$ satisfies the **quantization condition** if it has an asymptotic expansion as $\hbar \to 0$. In such case we define S_k via:

$$\psi_{\mathsf{NP}}(z) = \exp\left(rac{1}{\hbar^2}\sum_{k\geq 0}\hbar^k S_k(z)
ight).$$

Example

Consider the spectral curve $(\mathbb{C}/\Lambda, x(z) = \wp(z), y(z) = \wp'(z))$ with cycles $\mathcal{A} = [0, 1]$ and $\mathcal{B} = [0, \tau]$. It satisfies the Weierstrass equation

$$y^2 = 4x^3 - g_2 x - g_3.$$

- If $g_2 = 0$ then $\zeta_{\hbar} = 0$ and it satisfies the quantization condition.
- Quantum curve to $O(\hbar^7)$

$$\hat{P}(\hat{x},\hat{y}) = \hbar^2 \frac{d^2}{dx^2} - 4(x^3 - 1) + \hbar^2 \frac{x}{2^2 3} + \hbar^4 \frac{1}{2^6 3^2} \frac{d}{dx} + \hbar^4 \frac{x^2}{2^8 3^3} + \hbar^6 \frac{x}{2^{12} 3^4} \frac{d}{dx}.$$

Closed expression not known, simplicity.

Application to Knot invariants

A-polynomial

Let $X = S^3 \setminus \mathbb{K}$ be a knot complement. The **representation variety** $R(\pi_1(X))$ is defined as the quotient

$$R(\pi_1(X)) = \operatorname{Hom}(\pi_1(\mathbb{K}), \operatorname{SL}(2, \mathbb{C})) / \operatorname{SL}(2, \mathbb{C}).$$

Let $\mathfrak{l},\mathfrak{m}$ be the generators of the boundary torus $\pi_1(\partial X) \cong \mathbb{Z} \times \mathbb{Z}$. Then the **A-polynomial** is the defining polynomial of the algebraic variety in \mathbb{C}^2 which is the image of the map

$$\begin{split} \chi \colon R(\pi_1(X)) \to \mathbb{C} \times \mathbb{C} \\ \rho \mapsto (m, l), \end{split}$$
 For a representation ρ such that $\rho(\mathfrak{m}) = \begin{pmatrix} m & 1 \\ 0 & m^{-1} \end{pmatrix}, \ \rho(\mathfrak{l}) = \begin{pmatrix} l & 0 \\ t & l^{-1} \end{pmatrix}. \end{split}$

Given $X = S^3 \setminus \mathbb{K}$ with A-polynomial $A_{\mathbb{K}}(m, l) = 0$.

- A-polynomial curve has genus ≥ 1 (except $\mathbf{10}_{152}^{(1)}$ up to 8 crossings).
- It comes with two involutions $m\mapsto 1/m$ and $l\mapsto 1/l$.

Spectral curve is $(C_0, \ln m, \ln l)$ where C_0 is smooth birational to $A_{\mathbb{K}}(m, l) = 0$.

Fact:

 If the involution ι: (m, l) → (m, 1/l) satisfies ι_{*} = -id then ζ_ħ = 0 and therefore (C₀, ln m, ln l) satisfies the quantization condition. Let $J_N(\mathbb{K},q)$ be the N-colored Jones polynomial of a knot $\mathbb{K} \subset S^3$.

Theorem (Garoufalidis-Le)

There exists an operator $\hat{\mathfrak{A}}_{\mathbb{K}}\in\mathbb{Z}[e^{rac{\hbar}{2}\partial u},e^{u},e^{\hbar}]$ such that

$$\hat{\mathfrak{A}}_{\mathbb{K}} \cdot J_{u/\hbar}(\mathbb{K}, q = e^{2\hbar}) = 0.$$

AJ Conjecture

In the limit $N\to\infty,$ the operator $\hat{\mathfrak{A}}_{\mathbb{K}}$ and the A-polynomial coincide up to a factor.

Conjecture (Borot-Eynard)

- The non-perturbative TR wave function on the A-polynomial of a hyperbolic knot in S³ is annihilated Â_K.
- $J_N(\mathbb{K}, q = e^{2\hbar}) \sim C_{\hbar}B(u)\psi_{NP}(z_u^{(\alpha)})$

Checked up to $O(\hbar^4)$ for the figure eight knot and few other cases.

Open Problems

- Quantum Curve Conjecture: Non-perturvative TR wave function is annihilated by a quantum curve.
- Â-TR conjecture: Non-perturbative TR wave function of the A-polynomial of a hyperbolic knot computes the asymptotic expansion of its colored Jones polynomial.

Questions?