QUIZ II

Problem 1. Find the derivative of the following functions:

- $f(x)=-\ln (\cos (x))$. Chain rule:

$$
f^{\prime}(x)=\frac{-1}{\cos (x)}-\sin (x)=\frac{\sin (x)}{\cos (x)}=\tan (x)
$$

- $g(x)=\sin (x) \cos (x)$. Product rule:
$g^{\prime}(x)=\cos (x) \cos (x)+\sin (x)(-\sin (x))=\cos ^{2}(x)-\sin ^{2}(x)=\cos (2 x)$.
Alternatively we can write g as $g(x)=\frac{\sin (2 x)}{2}$, and then directly $g^{\prime}(x)=$ $\frac{2 \cos (2 x)}{2}=\cos (2 x)$.
- $h(x)=3 e^{x}$. Constant multiple rule:
$h^{\prime}(x)=3 e^{x}$.
- $a(x)=e^{\left(\frac{x^{2}}{\sin (x)}\right)}$
- $w(x)=\left(x^{3}-2 x+1\right)^{10}$
- $i(x)=\frac{\sqrt{x}}{2^{x}}$
- $j(x)=\cot (x) e^{x}$

Problem 2. Real world examples of derivatives. Fill each blank with a word from the list: slope, acceleration, force, velocity, marginal cost.

- If t is time and $v(t)$ velocity, then $\frac{d v(t)}{d t}$ is \qquad
- If x is distance and $f(x)$ is height, then $\frac{d f(x)}{d x}$ is \qquad
- If t is time and $D(t)$ is distance, then $\frac{d D(t)}{d t}$ is \qquad
- If x is distance and $w(x)$ is work, then $\frac{d w(t)}{d x}$ is \qquad
- If t is time and $c(x)$ is total cost of production, then $\frac{d c(t)}{d x}$ is \qquad

