QUIZ III

Problem 1. Compute the following limits and antiderivatives. For the antiderivatives, check your answer by differentiating. (Hint: Remember the constant + C !!!)

- $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{0}{0}$ by direct substitution, so we can use l'Hôpital's Rule.

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{1}=\frac{1}{1}=1 .
$$

- $\lim _{x \rightarrow 0} \frac{e^{3 x}-3 x-1}{x^{2}}=\frac{0}{0}$, so again we can use l'Hôpital's Rule (actually twice).

$$
\lim _{x \rightarrow 0} \frac{e^{3 x}-3 x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{3 e^{3 x}-3}{2 x}=\lim _{x \rightarrow 0} \frac{9 e^{3 x}}{2}=\frac{9}{2}
$$

- $\int 2 \sin (x) d x=2 \int \sin (x) d x=2(-\cos (x))+C=-2 \cos (x)+C$.

Note that $\cos ^{2}(x)$ can't be the antiderivative because its derivative is

$$
\frac{d}{d x}\left(\cos ^{2}(x)\right)=-2 \cos (x) \sin (x) \neq 2 \sin (x)
$$

- $\int\left(x^{3}-2 x+1\right) d x=\frac{x^{4}}{4}-x^{2}+x+C$
- $\int \sec ^{2}(x) d x=\tan (x)+C$. Recall that $\frac{d}{d x} \tan (x)=\sec ^{2}(x)$.
- $\int 2 e^{3 x} d x=\frac{2 e^{3 x}}{3}+C$.

Problem 2. Use $f(x)=x^{3}$ and linear approximation at the point $x=2$ to approximate the value of 2.1^{3} (3 pts).

The equation for the approximation at the point 2 (same as tangent line at that point) is:

$$
L(x)=f^{\prime}(2)(x-2)+f(2)
$$

We have that $f(2)=2^{3}=8$, and that $f^{\prime}(2)=3 \cdot 2^{2}=12$, so

$$
L(x)=12(x-2)+8 \text {. }
$$

Now we use it to find $\left.2.1^{3}=f(2.1) \simeq L(2.1)=12(2.1-2)+8\right) 12 \cdot 0.1+8=1.2+8=9.2$ The actual value is 9.261 (you did not have to compute it, but is was doable).

