Problem 1. (15 pts) Match each function with its corresponding 3rd-order Taylor polynomial.

- $f(x)=\cos (x)(1)$
- $g(x)=1+\sin (4 x)(2)$
- $h(x)=e^{3 x}(3)$
- $m(x)=\frac{2}{1-x}(4)$
- $k(x)=2 e^{x}(5)$
- $p_{3}(x)=1-\frac{x^{2}}{2!}(1)$
- $p_{3}(x)=2+2 x+x^{2}+\frac{x^{3}}{3}(5)$
- $p_{3}(x)=2+2 x+2 x^{2}+2 x^{3}(4)$
- $p_{3}(x)=1+3 x+\frac{9 x^{2}}{2}+\frac{9 x^{3}}{2}$
- $p_{3}(x)=1+4 x-\frac{64 x^{3}}{3!}(2)$

Problem 2. (20 pts) Determine if the following series converge or diverge. State in each case the theorem that applies.

- $\sum_{k=1}^{\infty}(-1)^{k}\left(\frac{3 k^{2}+3 k-1}{4 k^{3}+12}\right)$

Converges by the alternating series test since

$$
\lim _{k \rightarrow \infty} \frac{3 k^{2}+3 k-1}{4 k^{3}+12}=0
$$

- $\sum_{k=1}^{\infty} \frac{k!}{4^{k}} \ln (k)$

Diverges by the ratio test

$$
\lim _{k \rightarrow \infty} \frac{(k+1)!\ln (k+1)}{4^{k+1}} \frac{4^{k}}{k!\ln (k)}=\lim _{k \rightarrow \infty} \frac{k+1}{4}=\infty
$$

- $\sum_{k=1}^{\infty} \frac{1}{k-\ln (k)}$

Diverges by the comparison test since $1 / k$ diverges and

$$
\frac{1}{k-\ln (k)}>\frac{1}{k}
$$

- $\sum_{k=1}^{\infty} \frac{k^{k}}{2^{k} k!}$

Diverges by the ratio test

$$
\lim _{k \rightarrow \infty} \frac{(k+1)^{k+1}}{2^{k+1}(k+1)!} \frac{2^{k} k!}{k^{k}}=\lim _{k \rightarrow \infty} \frac{1}{2}\left(\frac{k+1}{k}\right)^{k}=\frac{e}{2}
$$

or by the divergence test since k^{k} has a greater growth rate than both $k!$ and 2^{k}.

Problem 3. (20 pts) Consider the function $f(x)=\sqrt[3]{x}$

- Compute the 1st and 2nd order Taylor polynomials centred at $a=8$.

$$
p_{2}(x)=2+\frac{x-8}{12}-\frac{(x-8)^{2}}{288}
$$

- Use $p_{2}(x)$ to approximate the value of $\sqrt[3]{8.1}$. (No need to evaluate)

$$
\sqrt[3]{8.1} \simeq 2+\frac{0.1}{12}-\frac{0.01}{288}
$$

- Use the remainder formula to estimate the error in the approximation. (No need to evaluate).

$$
\left|R_{2}(0.1)\right|<M \frac{0.1^{3}}{6}
$$

were M has to be larger than $f^{(3)}(x)=\frac{10}{27 x^{8 / 3}}$ for x between 0 and 0.1 . Since it is decreasing we can take its value at 0

$$
M=\frac{10}{27 \cdot 256}
$$

Problem 4. (10 pts) Compute the following limits using Taylor series.

- $\lim _{x \rightarrow 0} \frac{x-\sin (x)}{x^{3}}=\lim _{x \rightarrow 0} \frac{x-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\ldots}{x^{3}}=\frac{1}{6}$
- $\lim _{x \rightarrow 0} \frac{\tan (x)-\arctan (x)}{x^{3}}=\lim _{x \rightarrow 0} \frac{x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\ldots-\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots\right)}{x^{3}}=\frac{2}{3}$

Problem 5. (10 pts) Find the radius of convergence and interval of convergence of the following power series.

- $\sum_{k=0}^{\infty} \frac{(2 x-1)^{k}}{k+1}$

By the ratio test we have

$$
\lim _{k \rightarrow \infty} \frac{|(2 x-1)| k}{k+1}=|2 x-1|<1
$$

therefore $0<x<1$. Plugging in $x=1$ it diverges by limit comparison test with $1 / k$ and for $x=0$ it converges by the alternating series test. Therefore the interval is $[0,1)$ and the radius $1 / 2$.

- $\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{3^{k-1}}$

By the ratio test

$$
\lim _{k \rightarrow \infty} \frac{\left|x^{2 k+3}\right|}{3^{k}} \frac{3^{k-1}}{\left|x^{2 k+1}\right|}=\frac{\left|x^{2}\right|}{3}<1
$$

which implies that it converges for $-\sqrt{3}<x<\sqrt{3}$. At the endpoints it doesn't converge by the divergence test. Therefore the interval is $(-\sqrt{3}, \sqrt{3})$ and the radius is $\sqrt{3}$.

Problem 6 (Gabriel's wedding cake). (10pts) To celebrate that the course is over we are going to bake Gabriel's wedding cake. This wedding cake is made by stacking cylindrical cakes of height 1 and with decreasing radiuses $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$.

- Write the volume V_{n} of the nth stacked cake .

$$
V_{n}=1 \cdot \pi \cdot\left(\frac{1}{n}\right)^{2}=\frac{\pi}{n^{2}}
$$

- Find the total volume of the wedding cake.

$$
V=\sum \frac{\pi}{n^{2}}=\pi \sum \frac{1}{n^{2}}=\frac{\pi^{3}}{6}
$$

- Write the side area A_{n} of the nth stacked cake, find the total (side) area and argue why we shouldn't use frosting.

$$
\begin{aligned}
A_{n} & =2 \pi \frac{1}{n} \\
A=\sum A_{n} & =\sum 2 \pi \frac{1}{n}=\infty
\end{aligned}
$$

Because if we use frosting you become broke. You also can't steal it, because you can't steal an infinite amount of frosting

Problem 7 (Gabriel's Horn). (10 pts) To make you didn't forget what we did in the first part of the course: Consider the function $f(x)=1 / x$.

Since this is just the continuous version of the previous problem, you should recover similar answers.

- Show that the area under the function from 1 to ∞ diverges.

$$
\int_{1}^{\infty} \frac{1}{x} d x=\ln (\infty)-\ln (1)=\infty
$$

- Show that the volume of revolution from 1 to ∞ of the function $1 / x$ converges.

$$
V=\int_{1}^{\infty} \pi \frac{1}{x^{2}} d x=-\frac{\pi}{\infty}+\frac{\pi}{1}=\pi
$$

- Show that the area of revolution, however, diverges.(Hint: Use the general fact that $\sqrt{1+a^{2}}>1$).

$$
A=\int_{1}^{\infty} 2 \pi \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}}>\int_{1}^{\infty} 2 \pi \frac{1}{x} d x=\infty
$$

Therefore we can conclude that $A=\infty$.

Problem 8. (5 pts) Write any comments/thoughts you have about the course. Argue why this course may be useful in your future.

