Differential Equations and Physics

This exercise is meant to help you go through concepts and calculations introduced in Chapter 7.9 - Introduction to differential equations. Recall that a differential equation is a functional equation: this means that the solution (what we are looking for) is a function $x(t)$ satisfying the given equation. The terms of the equation can include x (unknown function), t (independent variable) and $x^{\prime}, x^{\prime \prime}, \ldots$ (derivatives). This is an example:

$$
x^{\prime}=3 t+2 \cos (x)
$$

Classical mechanics is the area of physics concerned in describing motions of objects. In Newton's formulation, this reduces to solving the differential equation

$$
F=m x^{\prime \prime}(t)
$$

where $x^{\prime \prime}(t)$ is the second derivative of the position $x(t)$, and thus the acceleration. This equation tells us that to describe the motion of an object it suffices to know the force F applied to it.

What is the order of this differential equation? Is it linear?

Consider now a few concrete examples. Throughout this problem assume that $m=$ 10 kg .

- Gravity. Very close to the earth the gravity can be considered constant. An object of 10 kg experiences a force of approximately $F=100 \mathrm{~N}$.
- Write Newton's equation.
- Solve Newton's equation by just using direct integration.
- Give the explicit equation if the object starts at rest at 100 m above the ground.
- Spring. The force produced by a spring to an object attached to it can be described using Hooke's law

$$
F=-k x .
$$

- Write down Newton's equation in this case.
- Show that $x(t)=A \cos (\sqrt{k / 10} t)+B \sin (\sqrt{k / 10} t)$ is a solution to the equation.
- Why are there two constants A and B ? Do they have any meaning? Find A and B when $x(0)=1, x^{\prime}(0)=1 / 2$ and $k=10$.
- Free fall with friction. In a free fall with friction we have both the force of gravity and the friction of the air. If the friction is assumed to be proportional to the velocity (say $10 v$) the force is given by

$$
F=\text { gravity }- \text { friction }=100-10 v=100-10 x^{\prime}(t) .
$$

Therefore Newton's equation becomes

$$
100-10 x^{\prime}(t)=10 x^{\prime \prime}(t)
$$

- Show that $x(t)=10 t+A e^{-t}+B$ is the general solution to the equation.
- Compute the velocity $v(t)=x^{\prime}(t)$.
- Compute $\lim _{t \rightarrow \infty} v(t)$ and discuss the result.

