Problem 1. (10 pts) Relate the following concepts:

- Area between functions: $\int_{a}^{b}(f(x)-g(x)) d x$
- Shells method about $y: \int_{a}^{b} 2 \pi x(f(x)-g(x)) d x$
- Lifting a rope: $\int_{0}^{h} \rho(y)(h-y) g d y$
- Area of revolution: $\int_{a}^{b} 2 \pi f(x) \sqrt{\left(f^{\prime}(x)\right)^{2}+1} d x$
- Washers method about $x: \int_{a}^{b} \pi\left(f^{2}(x)-g^{2}(x)\right) d x$
- Length of a curve: $\int_{a}^{b} \sqrt{\left(f^{\prime}(x)\right)^{2}+1} d x$

Problem 2. (30 pts) Consider the region R bounded by the curves $y=x+4, x=0$, and $y=x^{2}+2$.

- Compute the area of the region.

$$
A=\int_{0}^{2}\left(x+4-\left(x^{2}+2\right)\right) d x=\left[-x^{3} / 3+x^{2} / 2+2 x\right]_{0}^{2}=10 / 3
$$

- Write and evaluate a single integral that gives the volume of the solid generated when R is revolved about the x-axis.

Using Washers

$$
\begin{gathered}
V_{x}=\int_{0}^{2} \pi\left((x+4)^{2}-\left(x^{2}+2\right)^{2}\right) d x=\pi \int_{0}^{2}\left(-x^{4}-3 x^{2}+8 x+12\right) d x= \\
\pi\left[-x^{5} / 5-x^{3}+4 x^{2}+12 x\right]_{0}^{2}=\pi 128 / 5
\end{gathered}
$$

- Write and evaluate a single integral that gives the volume of the solid generated when R is revolved about the y-axis.
Using Shells
$V_{y}=\int_{0}^{2} 2 \pi x\left(x+4-\left(x^{2}+2\right)\right) d x=2 \pi \int_{0}^{2}\left(-x^{3}+x^{2}+2 x\right) d x=\left[-x^{4} / 4+x^{3} / 3+x^{2}\right]_{0}^{2}=\pi 16 / 3$
- Suppose that S is a solid whose base is R and whose cross sections perpendicular the x-axis are squares. Write and evaluate a single integral that gives the volume of S.
Using slicing method

$$
\begin{gathered}
V_{S}=\int_{0}^{2}\left(x+4-\left(x^{2}+2\right)\right)^{2} d x=\int_{0}^{2}\left(x^{4}-2 x^{3}-3 x^{2}+4 x+4\right) d x= \\
=\left[x^{5} / 5-x^{4} / 2-x^{3}+2 x^{2}+4 x\right]_{0}^{2}=32 / 5
\end{gathered}
$$

Problem 3. (15 pts) Find the length of the following curves:

- $y=\sqrt{(x-1)^{3}}$ in the interval $[6,10]$.

First $y^{\prime}=\frac{3}{2} \sqrt{x-1}$. Then $y^{\prime 2}=\frac{9}{4}(x-1)$ and

$$
\begin{gathered}
L=\int_{6}^{10} \sqrt{9 / 4(x-1)+1} d x=\int_{6}^{10} \sqrt{9 x / 4-5 / 4} d x=\left[8 / 27(9 x / 4-5 / 4)^{3 / 2}\right]_{6}^{10}= \\
\frac{85 \sqrt{85}-343}{27}=16.321 .
\end{gathered}
$$

- $y=\frac{\left(x^{2}+2\right)^{3 / 2}}{3}$ in the interval $[1,2]$. (Hint: The integral becomes easy if you simplify enough).
Again $y^{\prime}=x \sqrt{x^{2}+2}$. Then $y^{\prime 2}=x^{2}\left(x^{2}+2\right)=x^{4}+2 x^{2}$ and

$$
L=\int_{1}^{2} \sqrt{x^{4}+2 x^{2}+1} d x=\int_{1}^{2}\left(x^{2}+1\right)=\left[x^{3} / 3+x\right]_{1}^{2}=10 / 3
$$

Problem 4. (15 pts) A biologist is researching a newly-discovered species of bacteria. At time $t=0$ hours, she puts 100 bacteria into what she has determined to be a favourable growth medium. Six hours later, she measures 300 bacteria. No need to evaluate the expressions.

- Assuming exponential growth, what is the growth constant k for the bacteria?

Consider a model $B(t)=B_{0} e^{k t}$ where B stands for the number of bacteria. Since at $t=0$ there are 100 bacteria we have $B_{0}=100$. Thus

$$
300=B(6)=100 e^{k 6} \Rightarrow k=\ln (3) / 6
$$

- How many bacteria will she measure after 10 hours?

Computing

$$
B(10)=100 e^{\ln (3) / 6 \cdot 10}=100 e^{5 \ln (3) / 3}
$$

- How long will she have to wait to obtain 400 bacteria?

Solving for t

$$
400=100 e^{t \ln (3) / 6} \Rightarrow t=\frac{6 \ln 4}{\ln 3}
$$

Problem 5. Compute the following integrals/antiderivatives:

- $\int\left(x^{3}+\sqrt{x}\right) d x=\frac{x^{4}}{4}+\frac{2 x^{3 / 2}}{3}+C$
- $\int 3 \sin (x) e^{\cos (x)} d x=-3 e^{\cos (x)}+C$ (Using $\left.u=\cos (x).\right)$
- $\int_{0}^{3}\left(x^{2}-3 x+1\right) d x=\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+x\right]_{0}^{3}=-3 / 2$
- $\int \frac{2 x+1}{x^{2}+x+10} d x=\ln \left(x^{2}+x+10\right)+C\left(\right.$ Using $\left.u=x^{2}+x+10\right)$.

Problem 6. A climber made it to the top of the pitch and now needs to pull up the hanging rope. The rope extends from the top of the climb at 100 m all the way to the floor. Assume that, because of gravity, the rope is thicker in the lower end and its density profile in kg / m is given by $\rho(y)=5-0.04 y$ for $0 \leq y \leq 100$.

- Find the mass of the rope.

$$
m=\int_{0}^{100}(5-0.04 y) d y=\left[5 y-0.02 y^{2}\right]_{0}^{100}=500-200=300 \mathrm{~kg}
$$

- Find the work done by the climber to pull the rope all the way up. Take $g=$ $10 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{aligned}
& W=\int_{0}^{100}(100-y) 10(5-0.04 y) d y=10 \int_{0}^{100}\left(500-5 y-4 y+0.04 y^{2}\right) d y= \\
& 10\left[500 y-\frac{9 y^{2}}{2}+\frac{0.04 y^{3}}{3}\right]_{0}^{100}=10(50000-90000 / 2+40000 / 3)=550000 / 3
\end{aligned}
$$

- How many energy bars should she/he eat to compensate the work done if each bar provides 10J?
Many (or 55000/3).

