QUIZ I (Solutions)

Problem 1. The velocity of a jogger traveling along a straight road is given in feet per second by $v(t)=t(t-2)(t-4)$ for $0 \leq t \leq 3$ where t represents time in seconds.

- Write an expression for the acceleration.

$$
a(t)=d v(t) / d t=d\left(t^{3}-6 t^{2}+8 t\right) / d t=3 t^{2}-12 t+8
$$

- What is the displacement of the jogger during the time interval $0 \leq t \leq 3$?

$$
\int_{0}^{3} v(t) d t=\left[t^{4} / 4-2 t^{3}+4 t^{2}\right]_{0}^{3}=81 / 4-54+36=9 / 4 .
$$

- What is the total distance traveled by the jogger during the time interval $0 \leq$ $t \leq 3$? Since the function $v(t)$ is negative from 2 to 3 , we separate the integral into two parts.

$$
\int_{0}^{2} v(t) d t+\int_{2}^{3}(-v(t)) d t=4+7 / 4=34 / 4
$$

Problem 2. - Sketch the region enclosed by the curves $y=1 / x, y=(x-1) / 2$ and $x=1$.

- Compute the exact area of this region. First we need to fin the intersection between the two functions, which occurs at $x=2$:

$$
1 / x=(x-1) / 2 \Longleftrightarrow x^{2}-x-2=0 \Longleftrightarrow x=-1, x=2 .
$$

Therefore the area is

$$
\int_{1}^{2}(1 / x-(x-1) / 2) d x=\left[\ln (x)-x^{2} / 4+x / 2\right]=\ln (2)-\ln (1)-1 / 4=\ln (2)-1 / 4 .
$$

Problem 3. The base of a solid is the region bounded by $y=0, y=\sqrt{x}$ and $x=1$. Cross-sections of the solid perpendicular to the x axis are squares. Sketch the solid and an exemplifying cross section. Write and expression for the area of the crosssections depending on x and write an expression for the volume of the solid (no need to compute).

I will draw the picture in class. The area is the square of the function $A=y^{2}=$ $\left(\sqrt{x}^{2}\right)=x$. Thus the volume is

$$
V=\int_{0}^{1} A(x)=\int_{0}^{1} x
$$

