QUIZ III

Determine if the following series converge or diverge. Find the sum when possible.

- $\sum_{k=1}^{\infty} \frac{k^{3}+4 k^{2}+12}{3 k^{4}-2 k+1}$

Limit comparison test with $1 / k$.

$$
\lim _{k \rightarrow \infty} \frac{\frac{k^{3}+4 k^{2}+12}{3 k^{4}-2 k+1}}{\frac{1}{k}}=\lim _{k \rightarrow \infty} \frac{k^{4}+4 k^{3}+12 k}{3 k^{4}-2 k+1}=\frac{1}{3} .
$$

Since it is a nonzero number, it has the same convergence type as $\sum 1 / k$, and therefore it diverges.

- $\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\ldots$

Rewrite it explicitly as a geometric series.

$$
\sum_{k=1}^{\infty} \frac{3}{2}\left(\frac{1}{2}\right)^{k}=\frac{3}{2} \frac{1 / 2}{(1-1 / 2)}=\frac{3}{2}
$$

In particular it converges because the ratio $1 / 2<1$. .

- $\sum_{k=1}^{\infty} \frac{10^{k}}{k!}$

Use ratio test:

$$
\lim _{k \rightarrow \infty} \frac{\frac{10^{k+1}}{(k+1)!}}{\frac{10^{k}}{k!}}=\lim _{k \rightarrow \infty} \frac{10^{k+1}}{10^{k}} \frac{k!}{(k+1)!}=\lim _{k \rightarrow \infty} \frac{10}{k+1}=0 .
$$

Therefore it converges.

- $\sum_{k=0}^{\infty}(-1)^{k} \ln \left(1+\frac{1}{k}\right) d x$

It is an alternating series. Since

$$
\lim _{k \rightarrow \infty} \ln \left(1+\frac{1}{k}\right)=\ln (1)=0
$$

by the alternating series test in converges.

- $\sum_{k=2}^{\infty} \frac{1}{2 k}-\frac{1}{2 k+2}$

Rewrite it as a telescoping series

$$
\frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{k}-\frac{1}{k+1}=\frac{1}{4}
$$

Note that the series starts at $k=2$.

- $\sum_{k=1}^{\infty}\left(\frac{3 k+1}{4-2 k}\right)^{2 k}$

Use the root test

$$
\lim _{k \rightarrow \infty} \sqrt[k]{\left(\frac{3 k+1}{4-2 k}\right)^{2 k}}=\lim _{k \rightarrow \infty}\left(\frac{3 k+1}{4-2 k}\right)^{2}=\left(\frac{3}{-2}\right)^{2}=9 / 4>1
$$

It diverges.

