Counting Geometric Objects

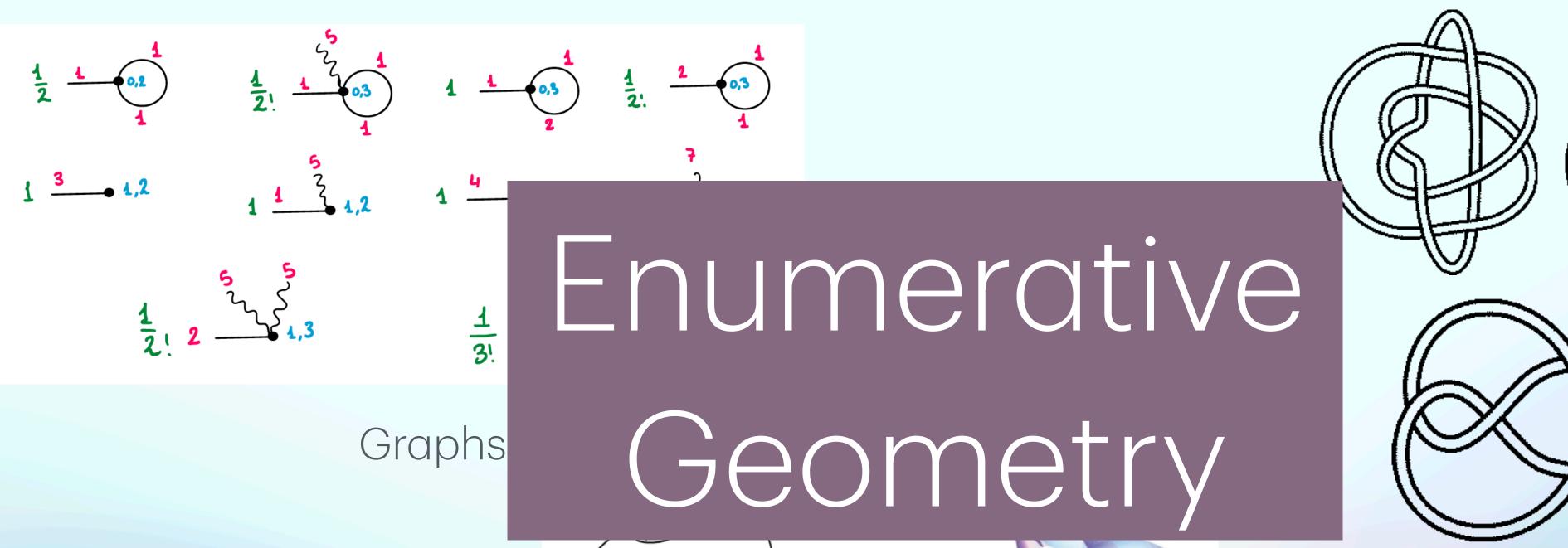
An introduction to Enumerative Geometry

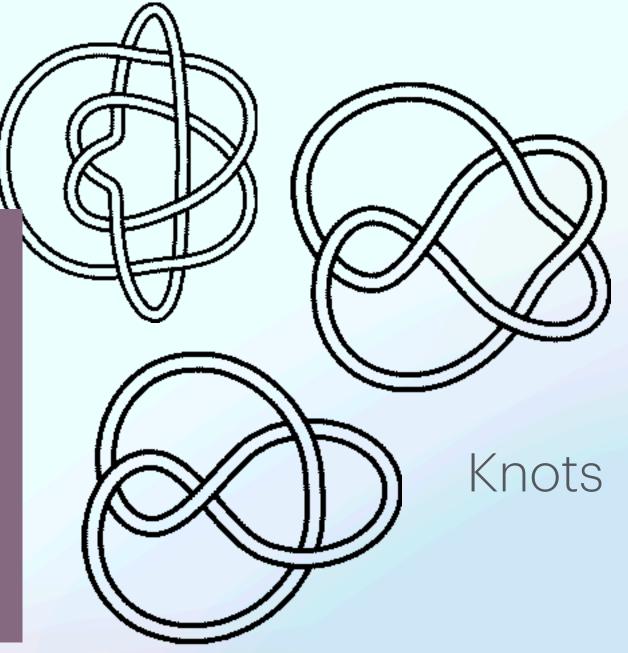
About myself

- Studied mathematics & physics at the University of Barcelona (UB)
- Got a PhD in mathematics from Boston University (BU)
- Currently teach mathematics at Harvard University. College courses for undergraduates and in the Pre-College program

My Thesis

Non-Perturbative Topological Recursion and Knot Invariants





Enumerative Geometry

The history of its problems...

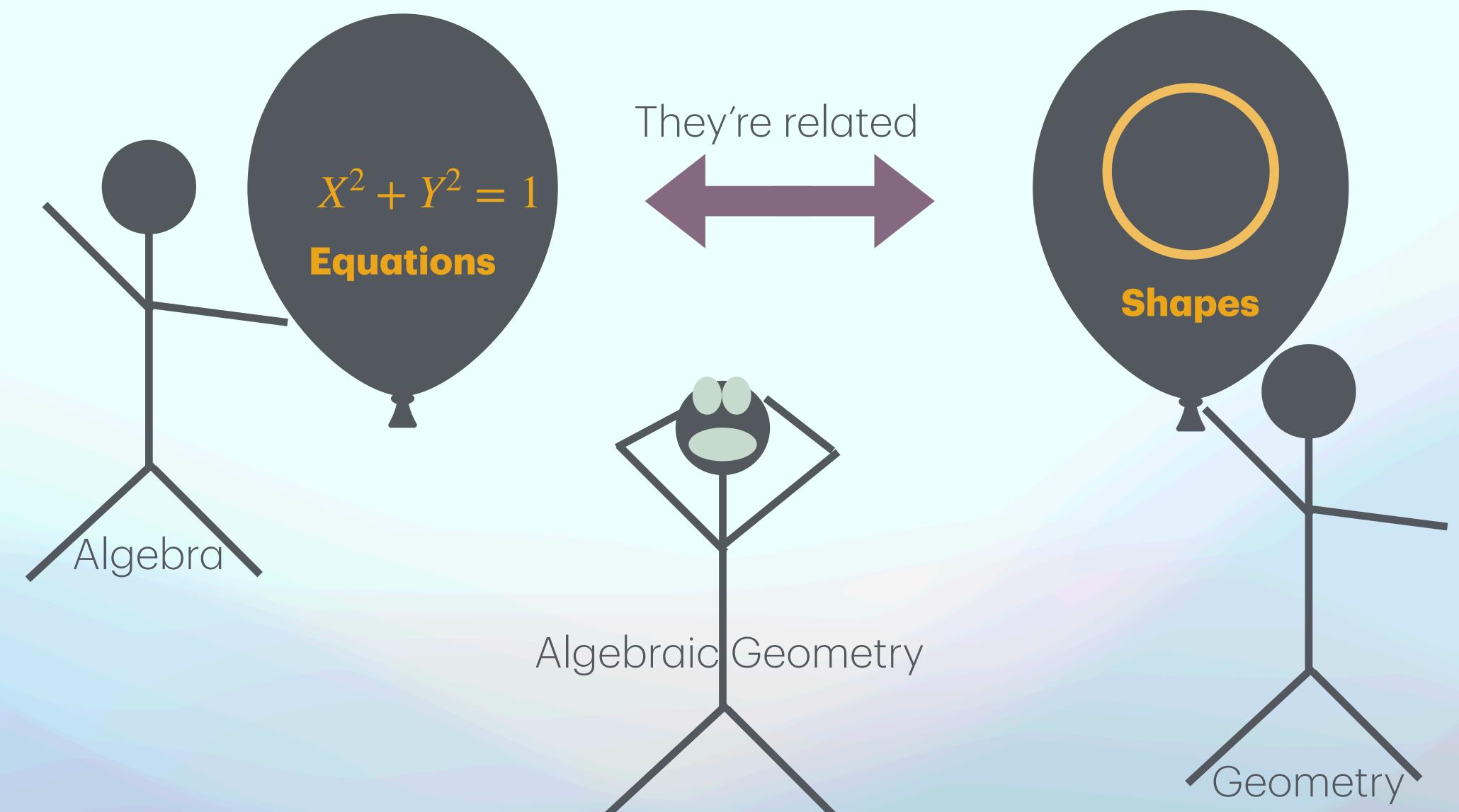
- Ancient Greece: Apollonius of Perga (problem of Apollonius)
- 18th century: Étienne Bézout (intersections of polynomials)
- 19th century: term "Enumerative Geometry" is coined (first as Géométrie Énumérative). Michel Chasles (Chasles Theorem), Hermann Schubert (Schubert Calculus)
- 20th century: David Hilbert (15th of his famous 23 problems)
- Late 20th century: Quantum Cohomology, etc.

Enumerative Geometry

...and discoveries that helped it develop

- Ancient Greece: Euclid (foundational work in *The Elements*), Archimedes
- 17th and 18th centuries: Pierre de Fermat (method of *Adequality*), Rene Descartes (introduced coordinate geometry), Isaac Newton, Gottfried Wilhelm Leibniz (calculus)
- 19th century: Bernhard Riemann (Riemann surfaces)
- 20th Century: Andre Weil, Alexander Grothendieck (algebraic geometry), William Fulton (intersection theory)
- · Late 20th Century: Edward Witten, Maxim Kontsevich

a branch of Algebraic Geometry



and hence a branch of Geometry

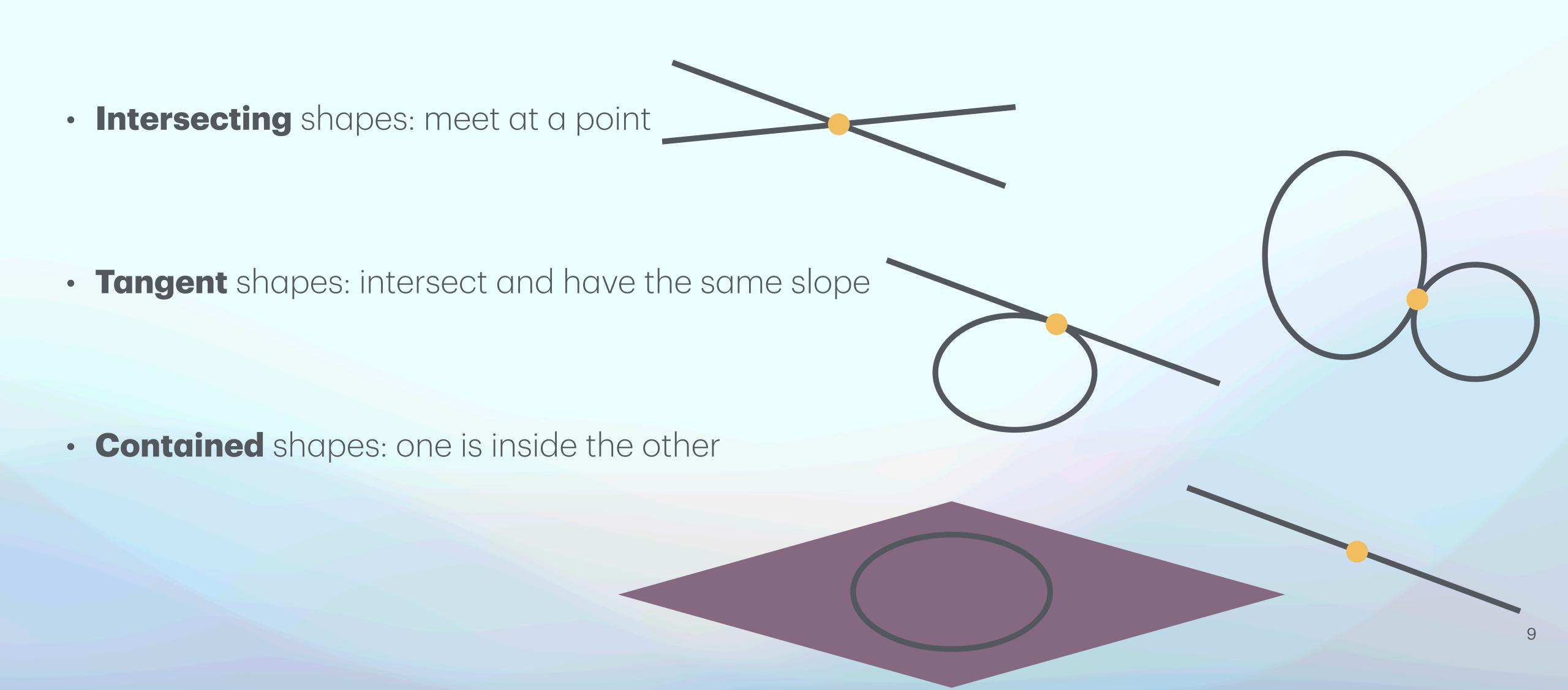
... from ChatGPT

Geometry is a branch of mathematics that studies the **properties**, relationships, and measurements of points, lines, shapes, surfaces, and solids. It deals with the spatial properties of **objects** and their arrangements, focusing on their sizes, shapes, relative positions, and the properties of **space**.

"The Study of Properties of Objects in Space"

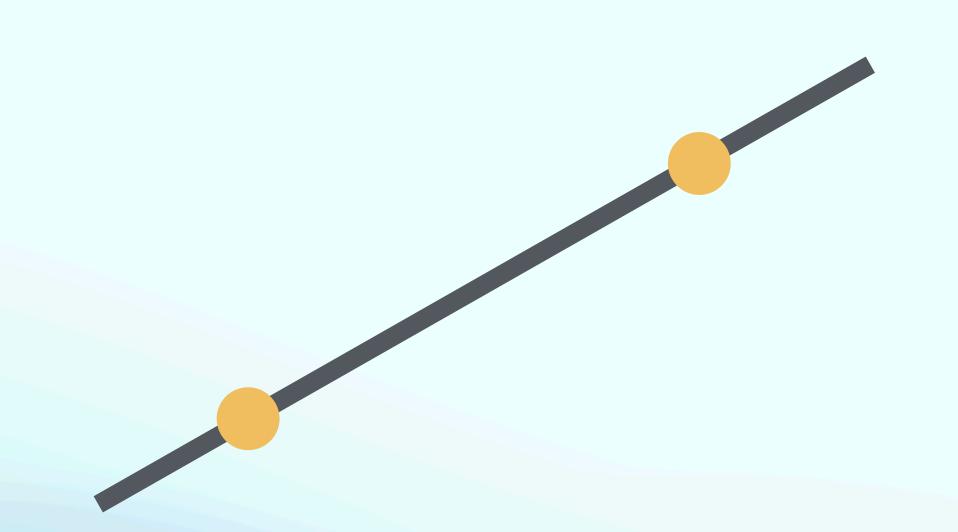
Points, Lines and Circles

Some Preliminary Concepts

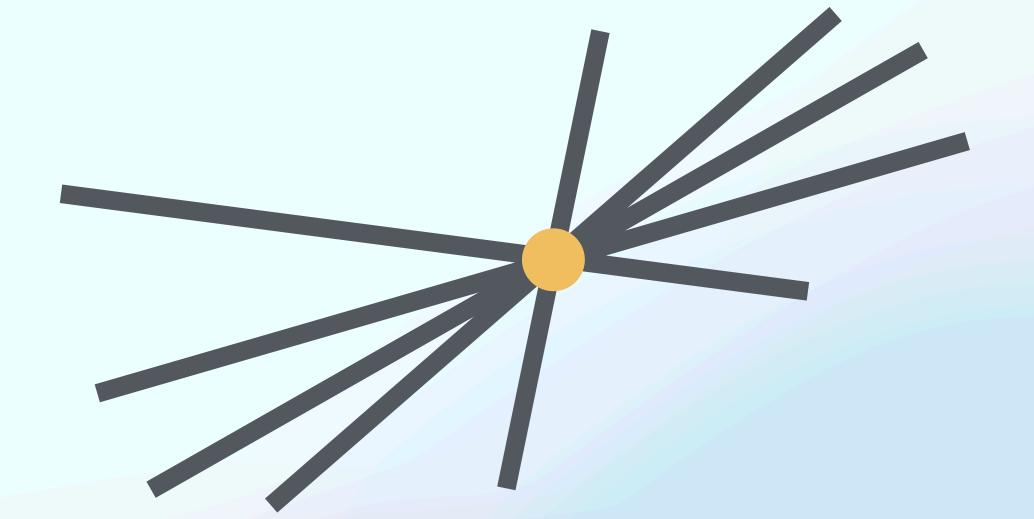


Lines Through Two Points

How many lines can be drawn through two points?



One, if the points are different

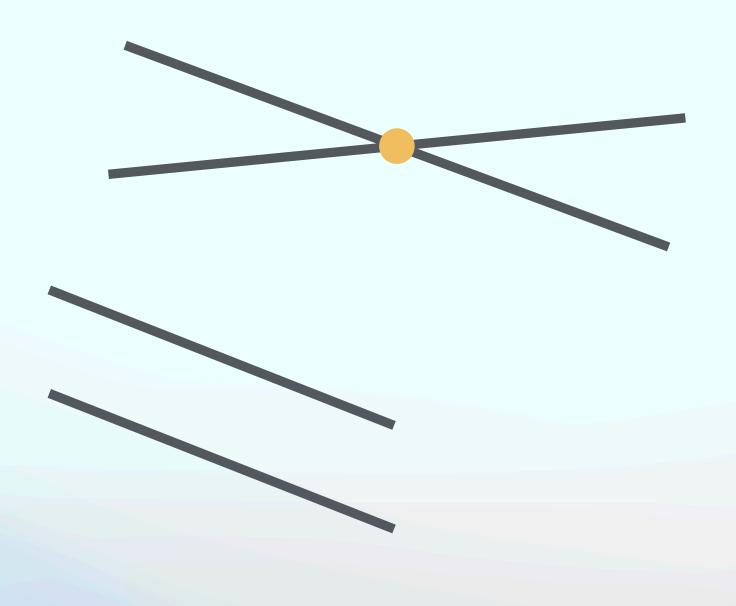


Infinite, if they're the same point

The notion of generic

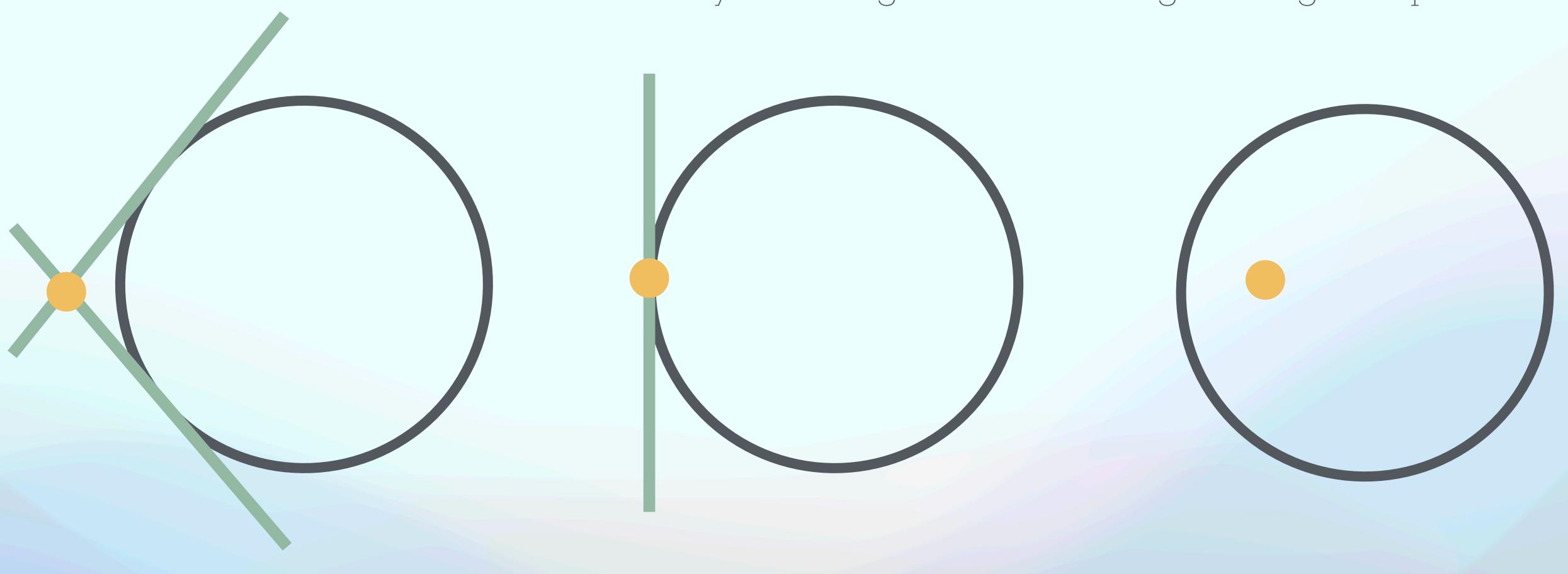
Something that is true most of the time

• Two (generic) lines intersect at a single point. Usually true, even though not always the case.



Circles and Points

Consider a Circle and a Point. How many lines tangent to the circle go through the point?



Two, if point outside

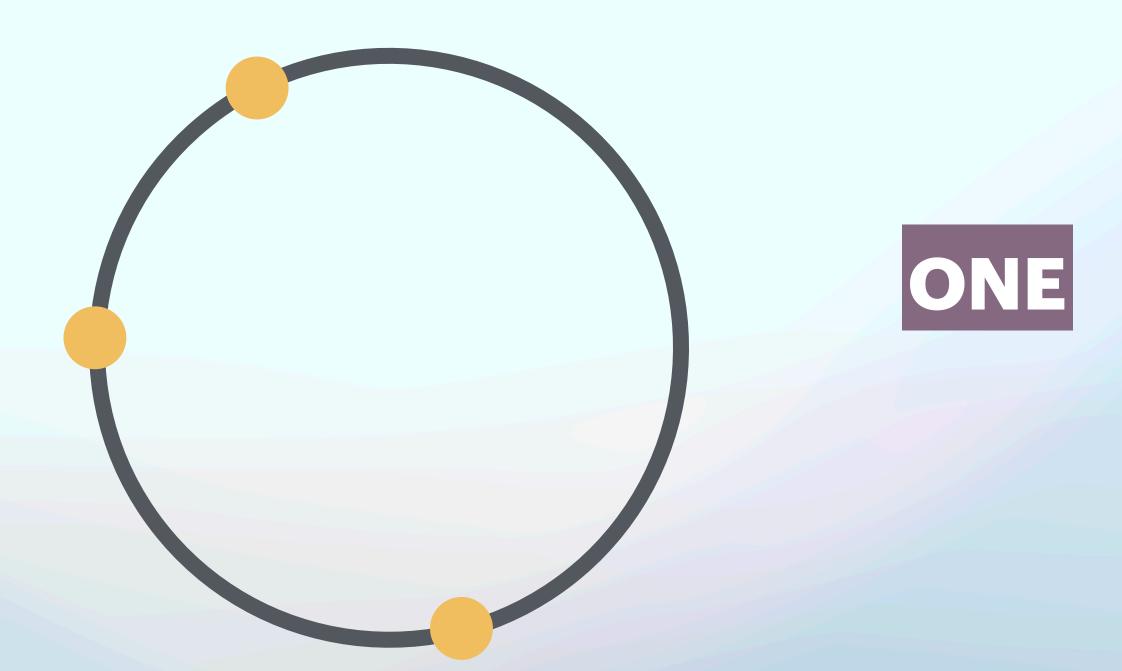
One, if point on circle

None, if point inside

- Apollonius of Perga (c. 262 BC c. 190 BC) posed and solved this problem himself.
- The question asks to count and construct circles on the plane satisfying a series of conditions involving points, lines and circles.

Case of three points

• Generically, how many circles are there through three given points?

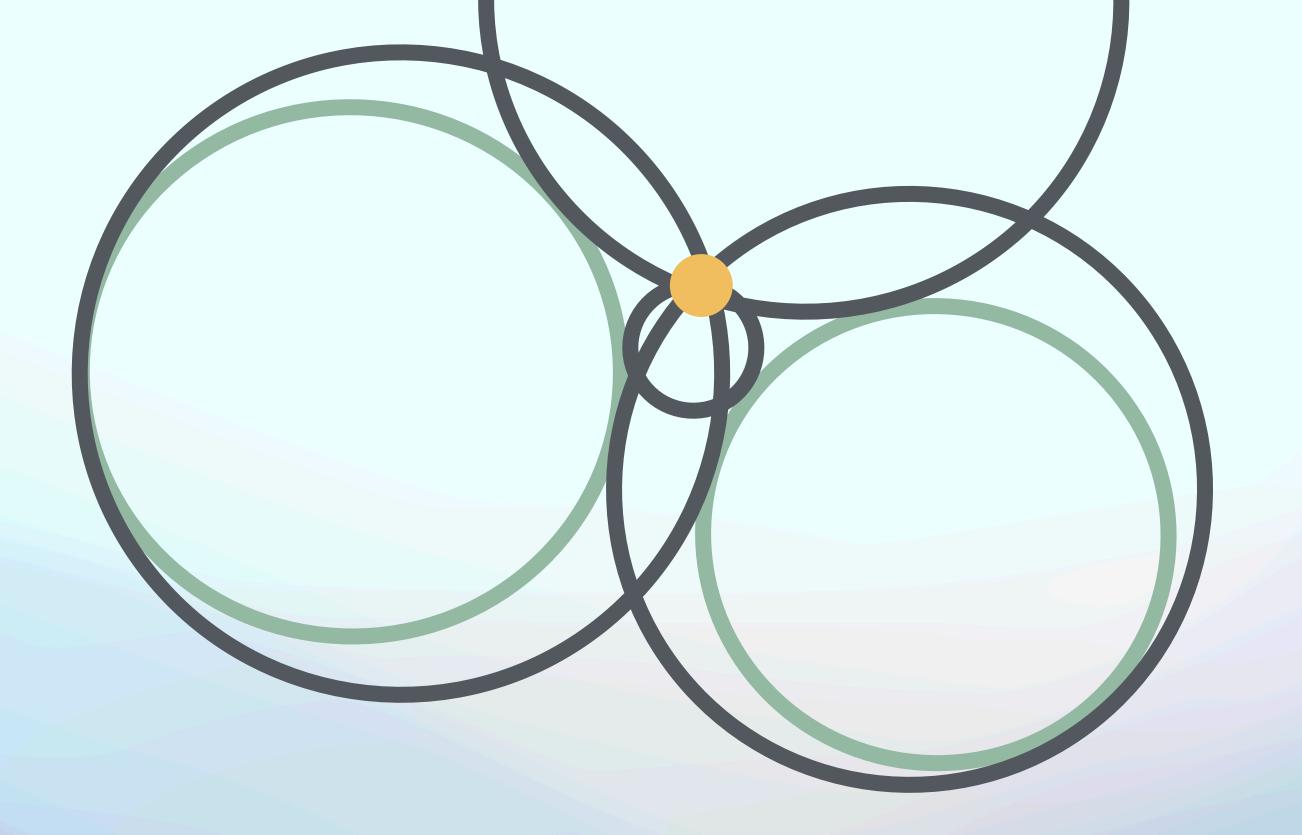


Case of two points and a line

Generically, how many circles are tangent to a given line and go through two given points?

Case of two circles and a point

• Generically, how many circles are tangent to two given circles and go through a given point?



Case of two circles and a point

• Generically, how many circles are tangent to three given circles?

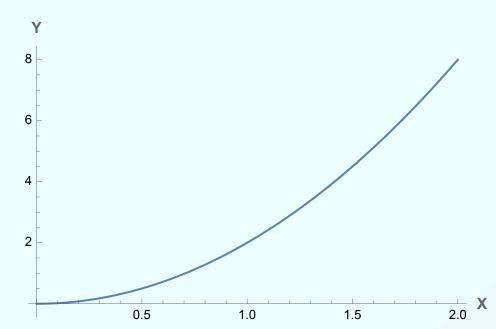
Index ÷	Code ÷	Given Elements +	Number of solutions (in general)	Example (solution in pink; given objects in black)
1	PPP	three points	1	
2	LPP	one line and two points	2	
3	LLP	two lines and a point	2	
4	СРР	one circle and two points	2	
5	LLL	three lines	4	
6	CLP	one circle, one line, and a point	4	
7	ССР	two circles and a point	4	
8	CLL	one circle and two lines	8	
9	CCL	two circles and a line	8	
10	ccc	three circles (the classic problem)	8	

Fitting Lines in Curves

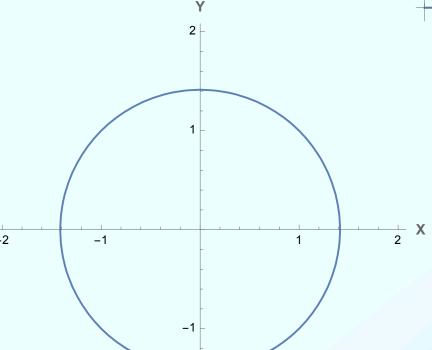
Algebra of Curves

4 3 2 1 0.5 1.0 1.5 2.0 X

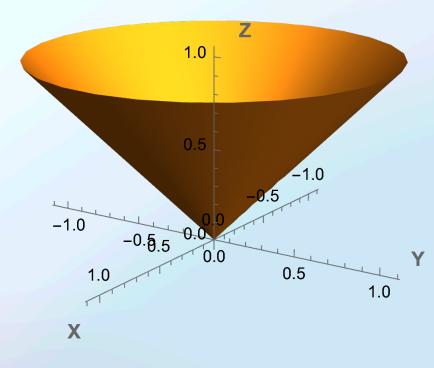
• This **linear** equation Y=2X defines a line in \mathbb{R}^2



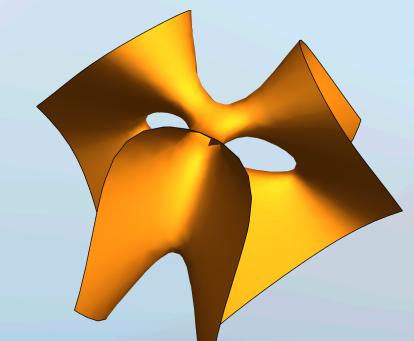
• This **quadratic** equation $Y=2X^2$ defines a parabola in \mathbb{R}^2



- This quadratic equation $2=X^2+Y^2$ defines a circle in \mathbb{R}^2

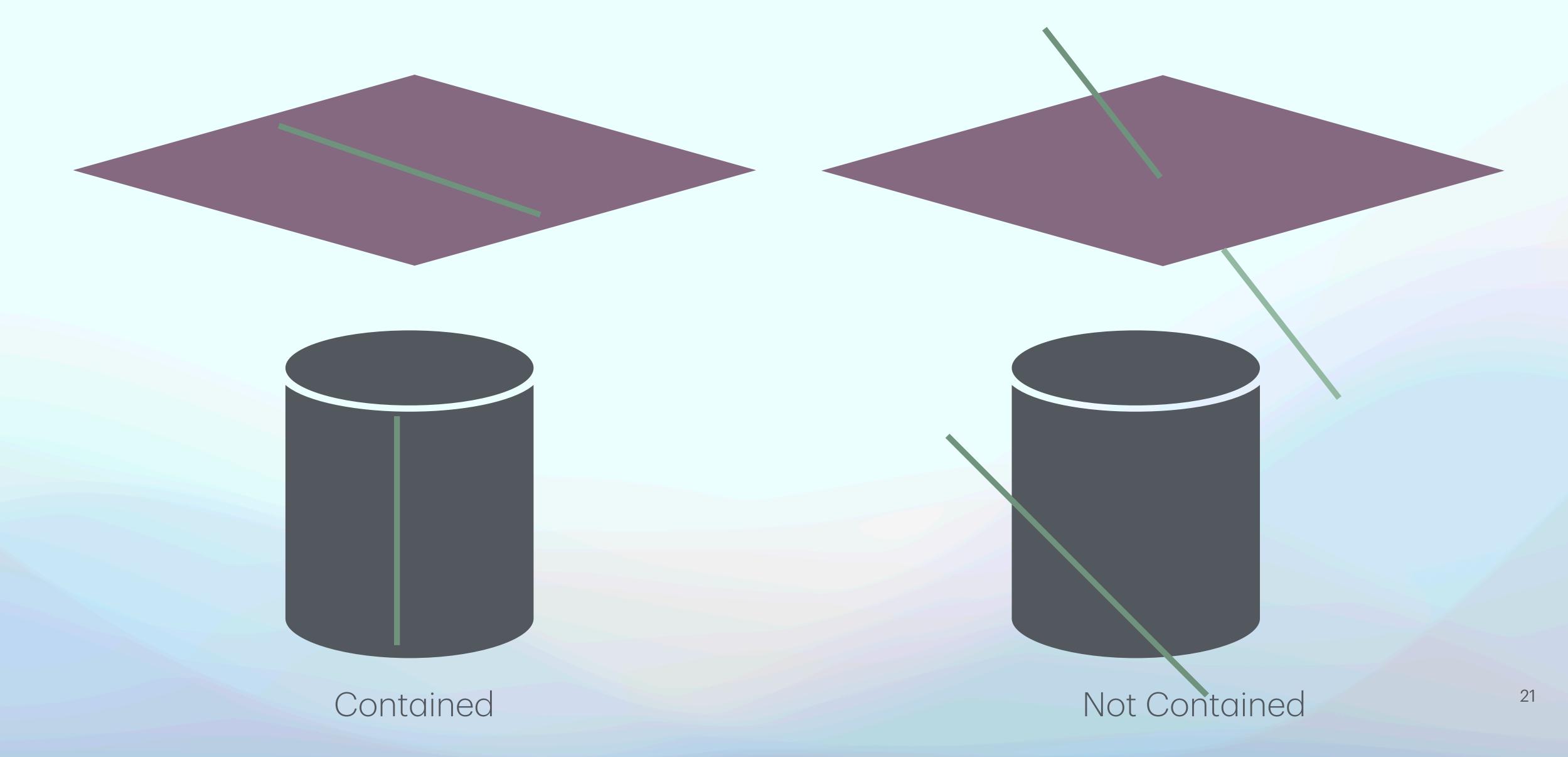


• This quadratic equation $Z^2 = X^2 + Y^2$ defines a cone in \mathbb{R}^3

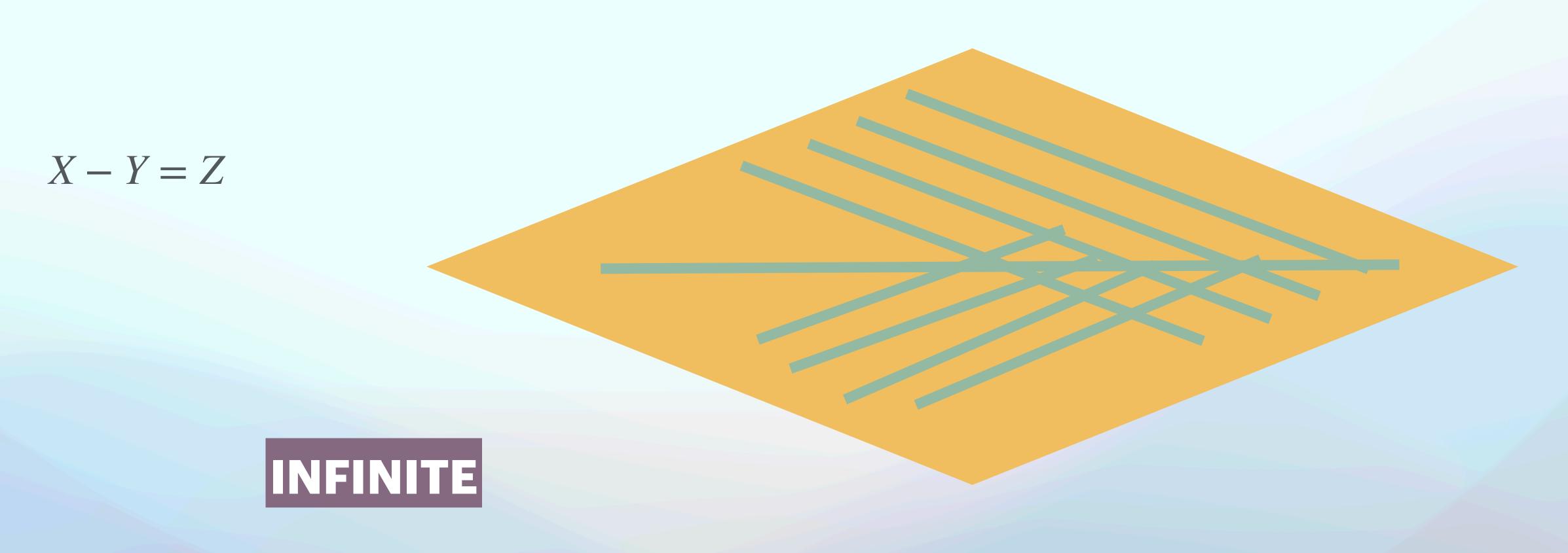


• This **cubic** equation $X^3 + Y^3 + Z^3 + 1 = (X + Y + Z + 1)^3$ defines a surface in \mathbb{R}^3

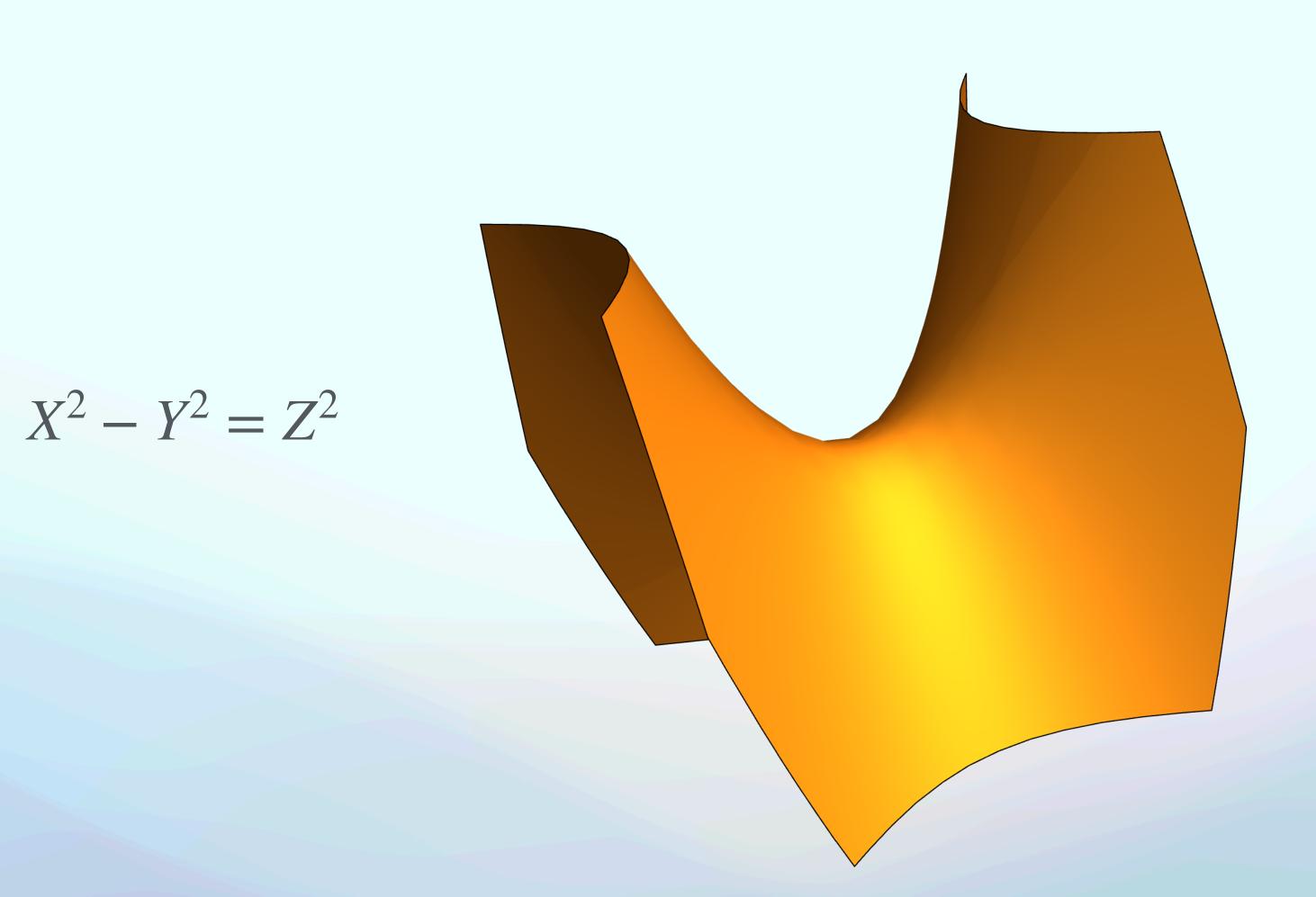
How many lines can you fit inside a surface?



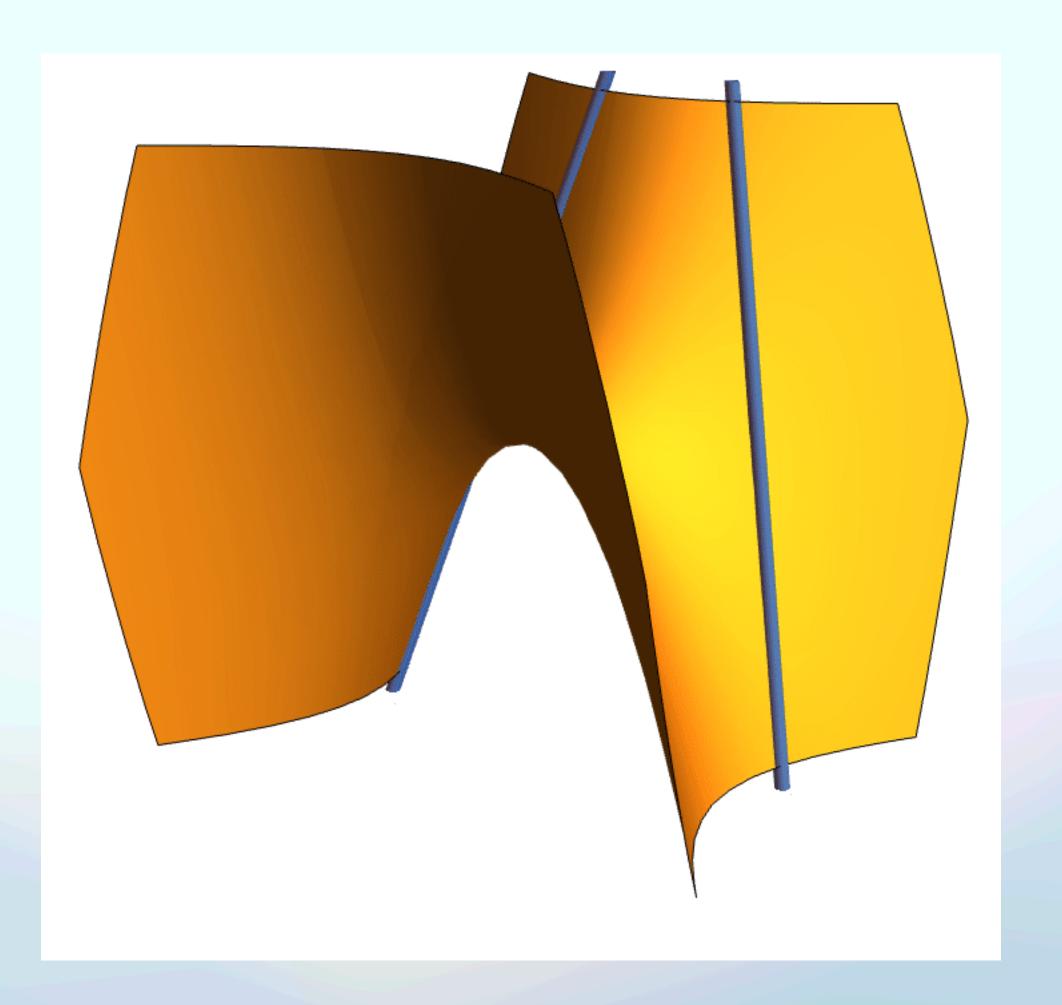
How many lines are contained in a linear surface (a plane)?



How many lines are contained in a quadratic surface?

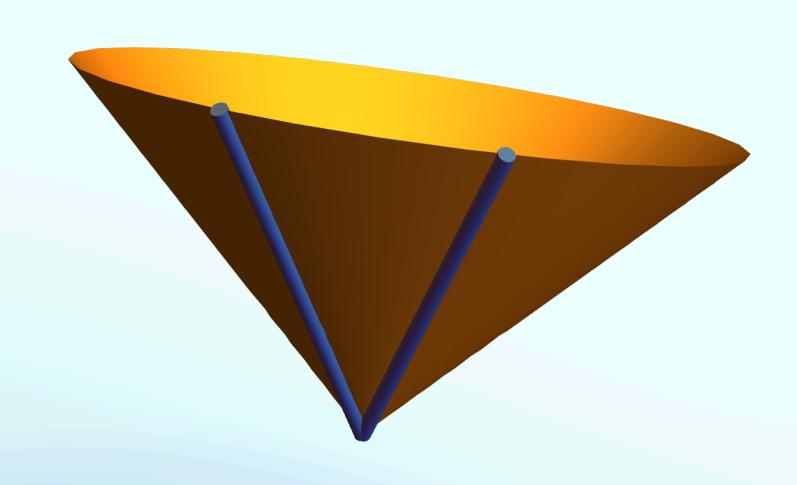


How many lines are contained in a quadric surface?

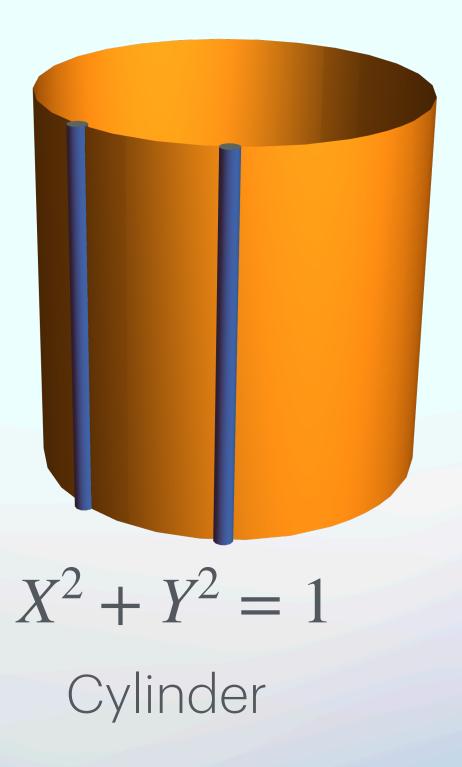


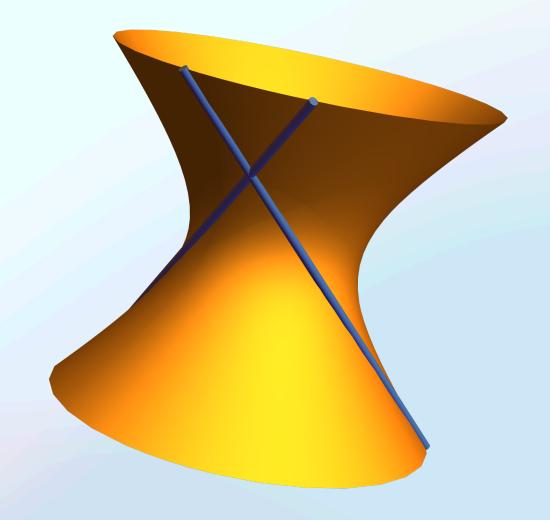
Ruled Surfaces

All these quadratic surfaces have infinite lines in them!



$$X^2 + Y^2 = Z^2$$
Cone



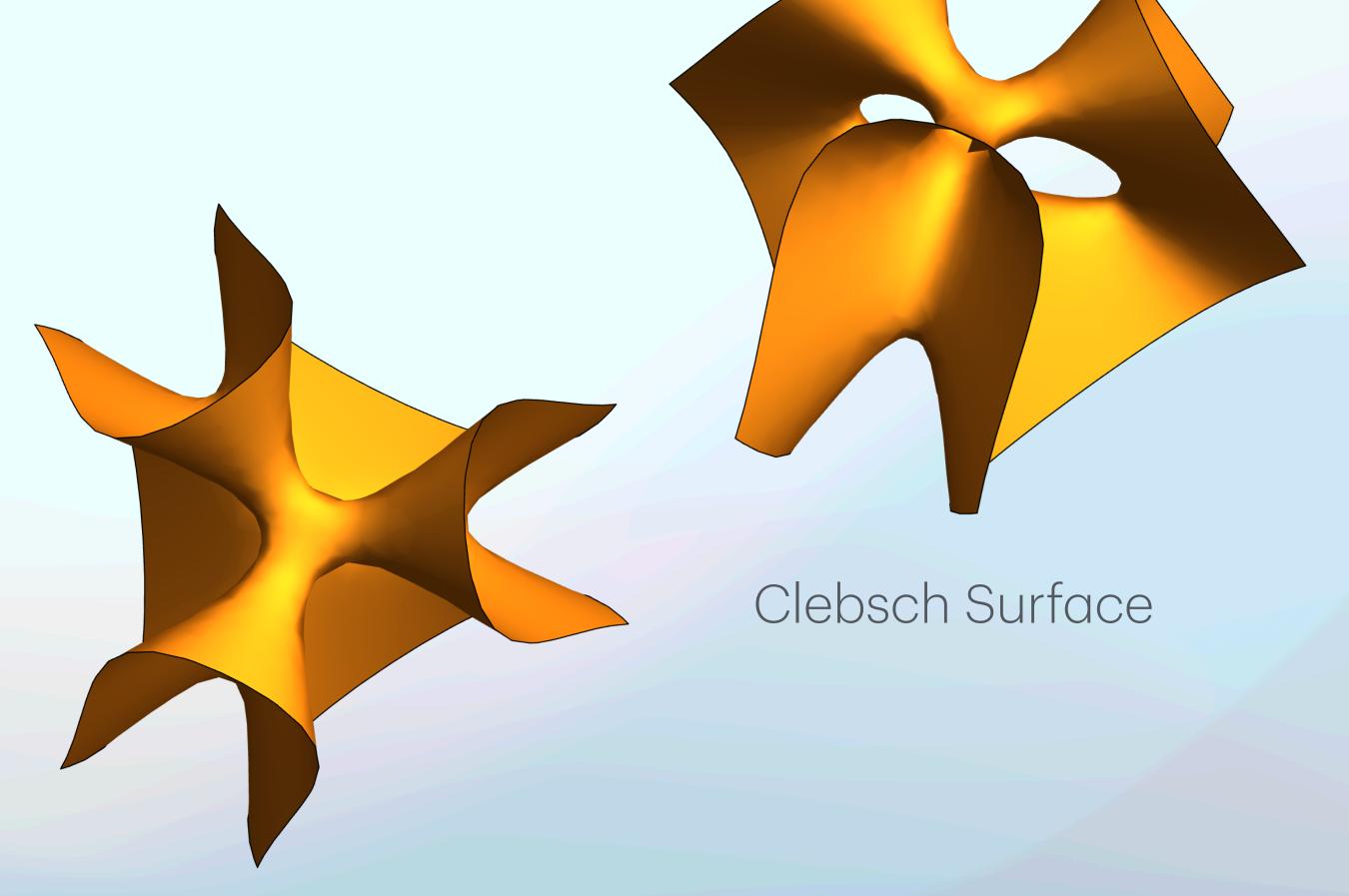


$$X^2 + Y^2 = Z^2 + 1$$
Hyperboloid

How many lines go through a cubic surface?

$$X^3 + Y^3 + Z^3 + 1 = (X + Y + Z + 1)^3$$

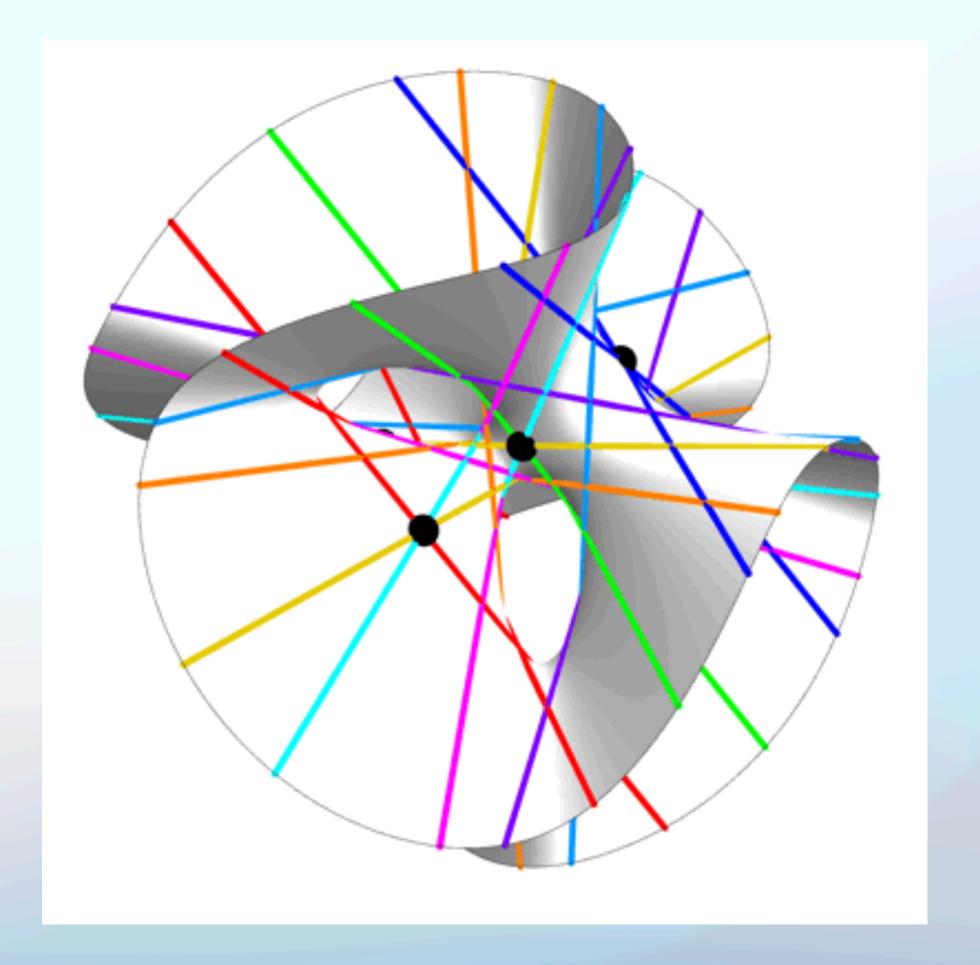
TWENTY-SEVEN



How many lines go through a cubic surface?

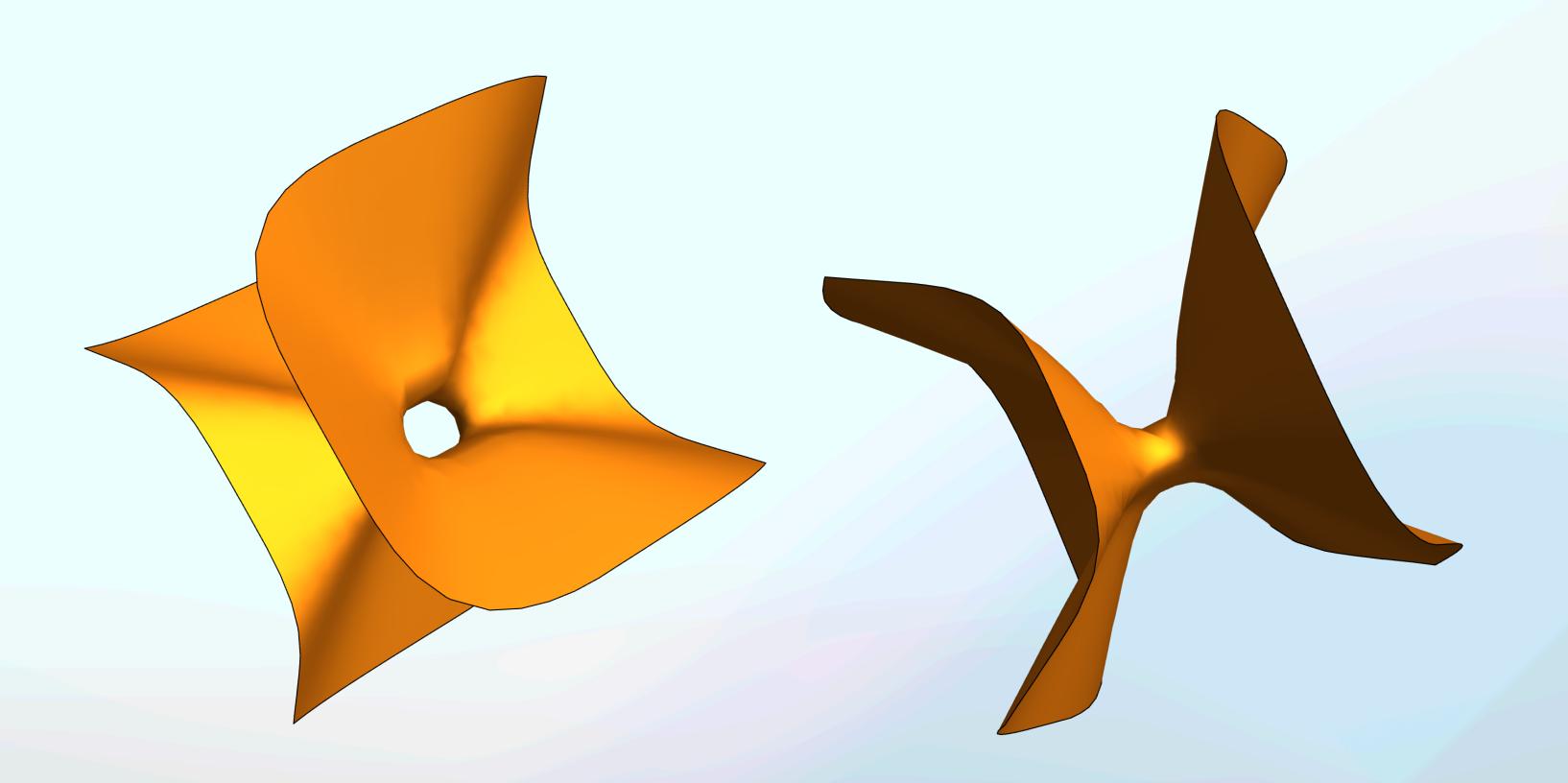
$$X^3 + Y^3 + Z^3 + 1 = (X + Y + Z + 1)^3$$

TWENTY-SEVEN



How many lines go through a quartic surface?

$$X^4 - XY^3 = Z^4 = Z$$



Schur Surface

How many lines are contained in a quadratic surface?

Degree	Maximum Number of Real Lines	Maximum Number of Lines	Name
1	infinity	infinity	Plane
2	infinity	infinity	Quadratic
3	27	27	Cubic
4	56	64	Quartic
5	??	??	Quintic

Intersection Theory

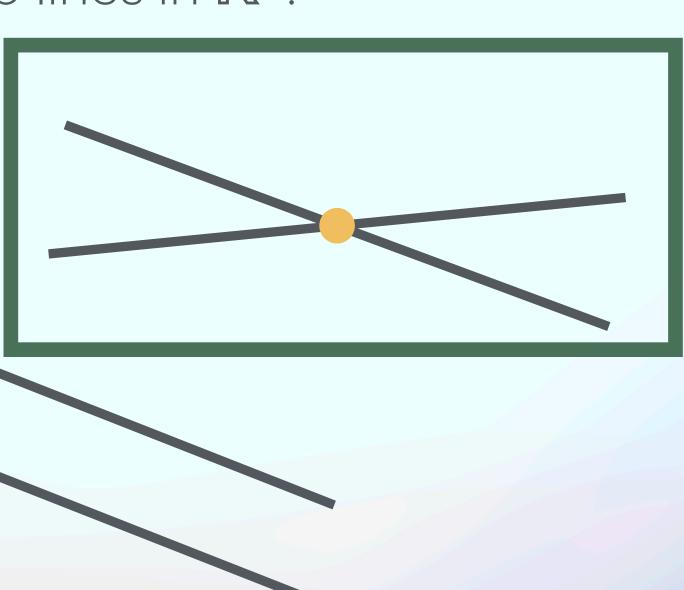
Solving Systems of Equations

How many solutions does the system $\begin{cases} 2x + y = 9 \\ x + v = 3 \end{cases}$ have?

$$\begin{cases} 2x + y = 9 \\ x + y = 3 \end{cases}$$
 have

- Generically, this is the intersection of two lines in \mathbb{R}^2 :
 - Intersecting: one solution

Coincident: infinite solutions



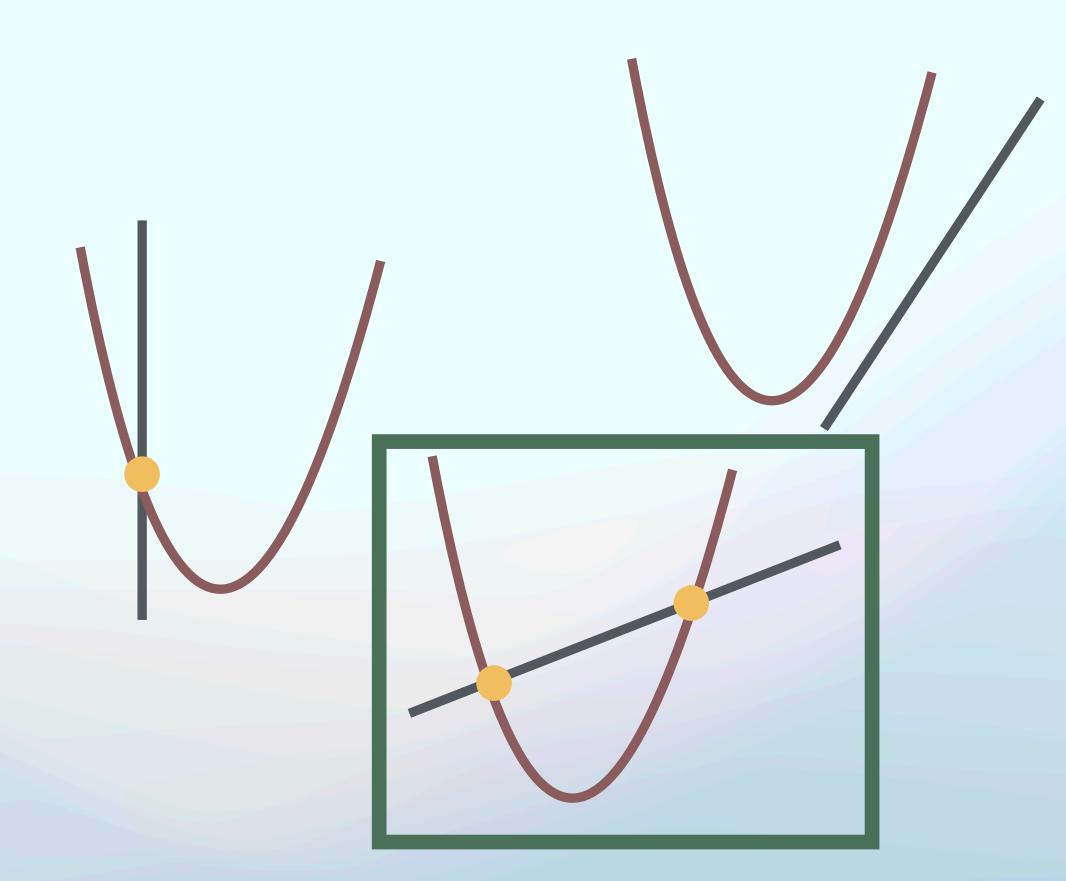
Solving Systems of Equations

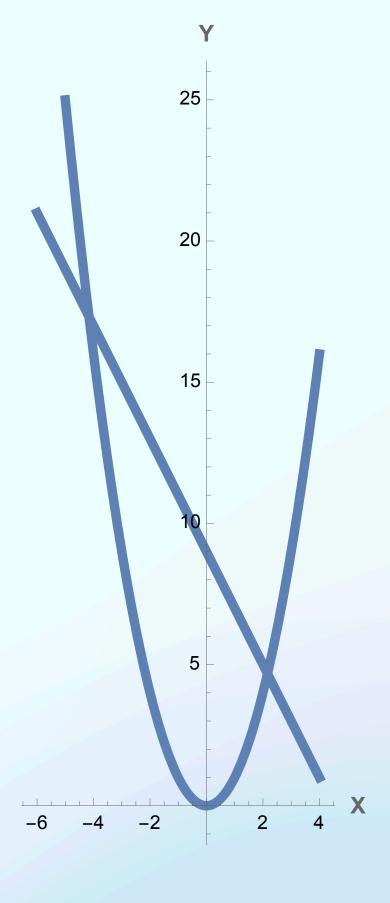
How many solutions does the system $\begin{cases} 2x + y = 9 \\ v = x^2 \end{cases}$ have?

- Generically, this is the intersection of a line and a parabola in \mathbb{R}^2 :
 - Disjoint: **zero** solutions

• Intersecting: one solution

• Intersecting: two solutions



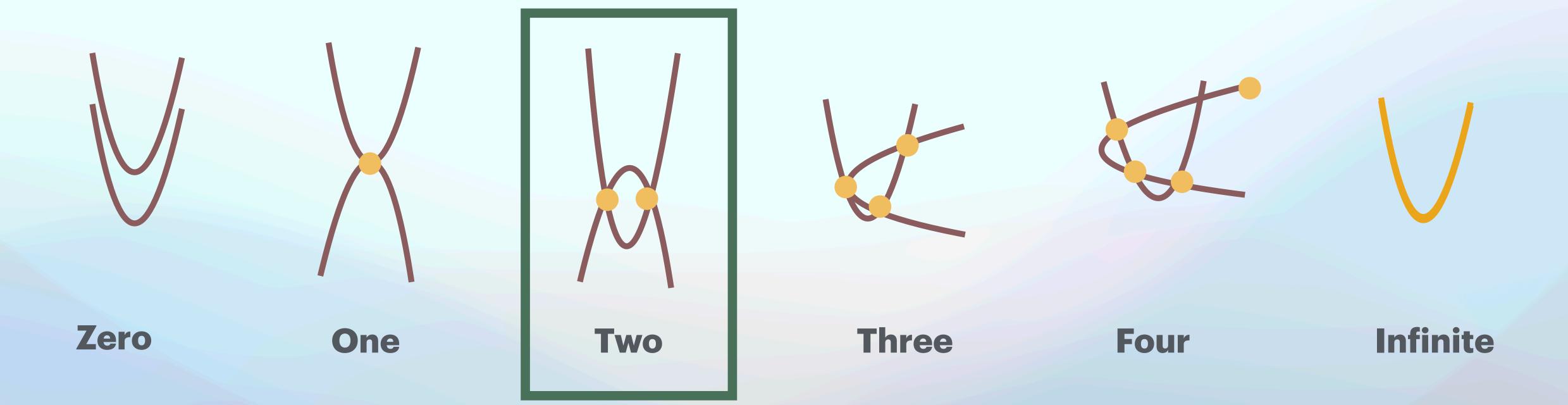


Solving Systems of Equations

How many solutions does the system $\begin{cases} 2x^2 + y = 9 \\ y^2 = -x \end{cases}$ have?

2 -4 -3 -2 -1 -2 -2

• Generically, this is the intersection of two parabolas in \mathbb{R}^2 :



Counting Intersections

suppose we have n polynomials of degrees $d_1, d_2, ..., d_n$ in \mathbb{R}^n then either

- The number of intersection points is infinite or...
- The number of intersection points is, generically, at most the product of the quantities

$$d_1 \times d_2 \times \cdots \times d_n$$

• In \mathbb{R}^2

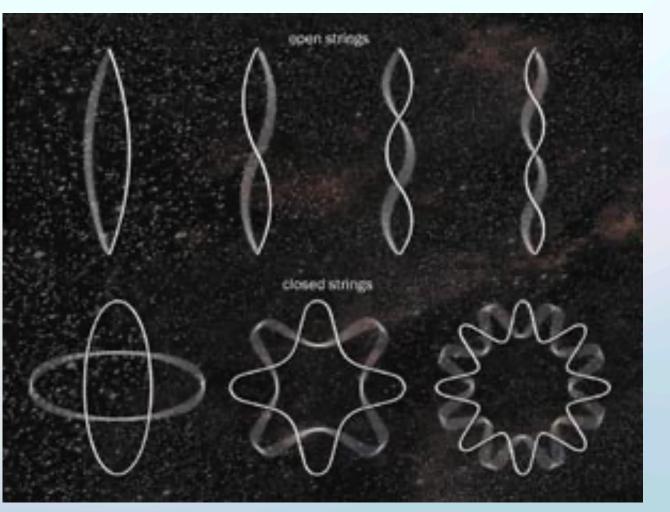
d1	d2	Max intersections
1	1	1
1	2	2
2	2	4
3	7	21

Graphs Sums in String Theory

String Theory

What is it about?

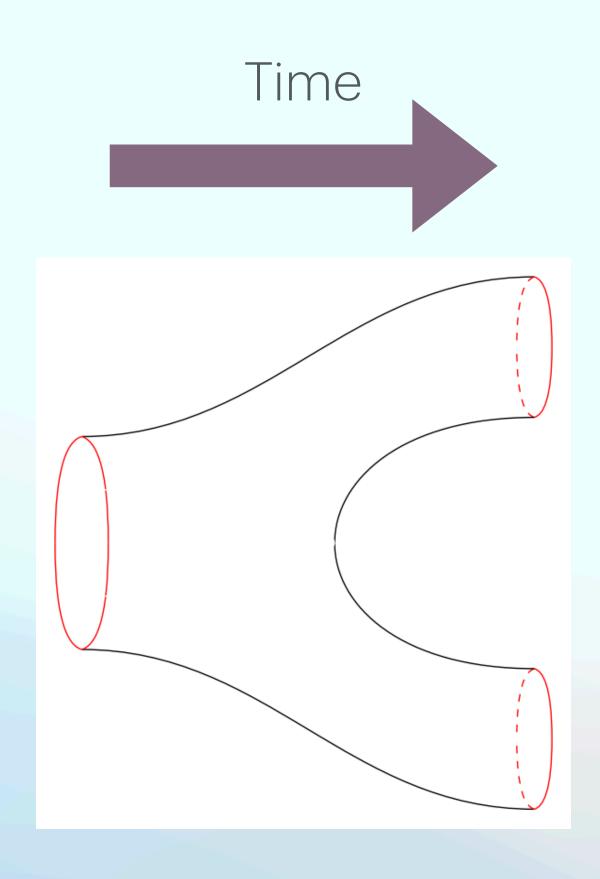
String Theory is a theory in physics that suggests the basic building blocks of the universe
are not tiny particles like atoms, but incredibly small, vibrating strings. Imagine these strings
like tiny rubber bands, and their vibrations determine the type of particle they become. This
theory aims to explain how all the forces and particles in the universe are connected,
potentially providing a single framework to understand everything from the smallest
particles to the biggest galaxies.



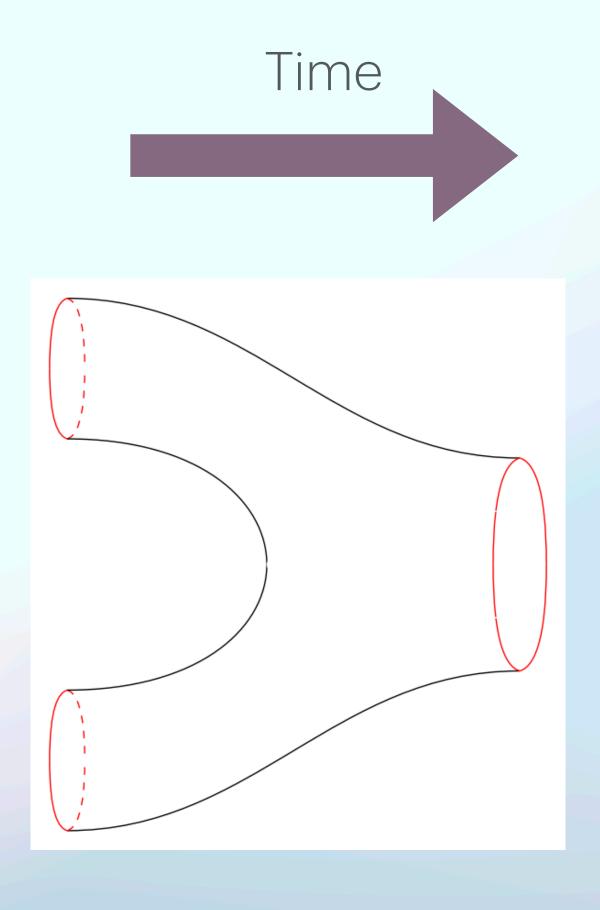
How strings evolve in time

• Imagine a closed string as a circle. Time

String can divide and merge



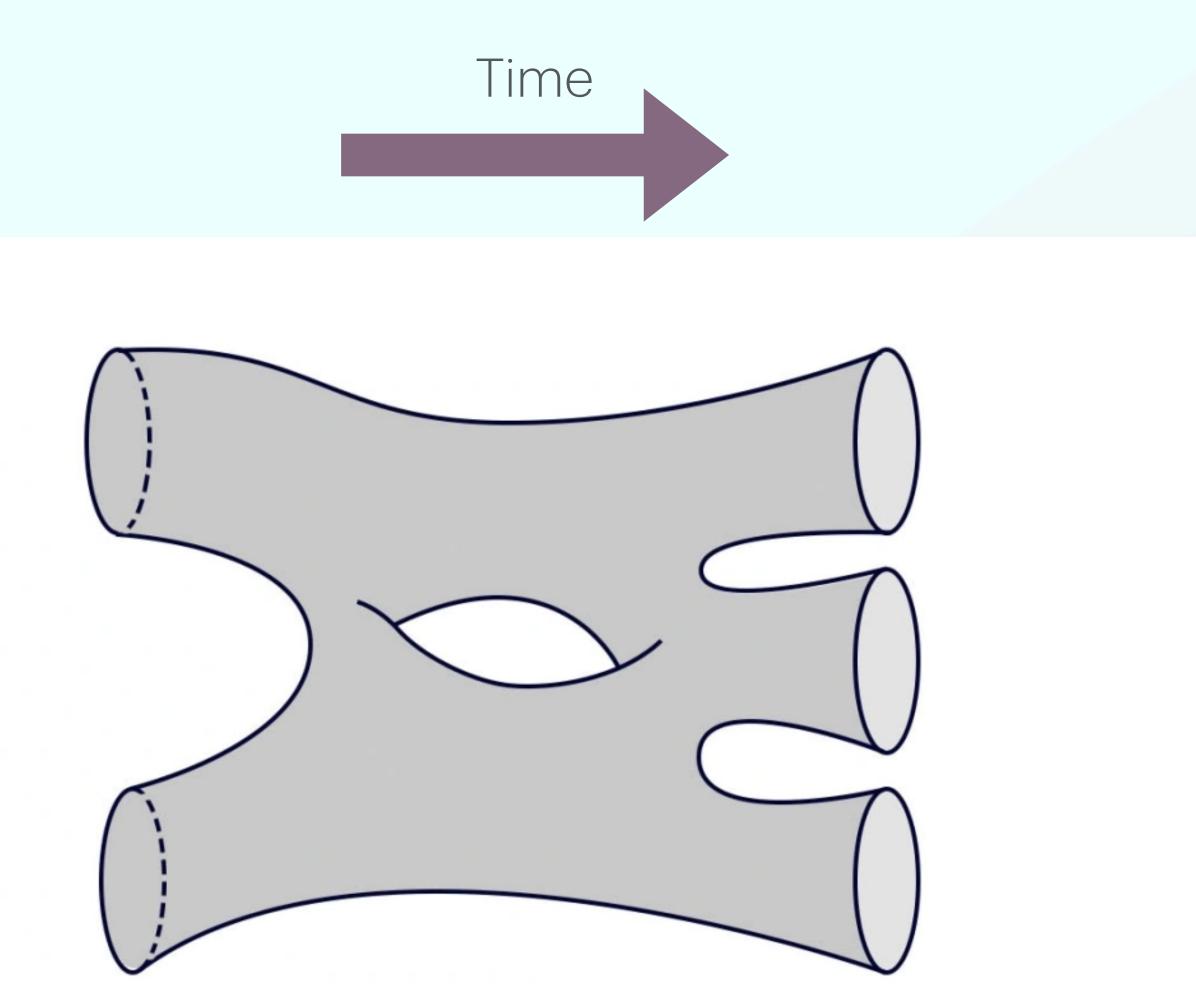
Dividing String



Merging Strings

Time Evolution of a String

 As strings evolve in time, they divide and merge, creating a surface with holes and openings.

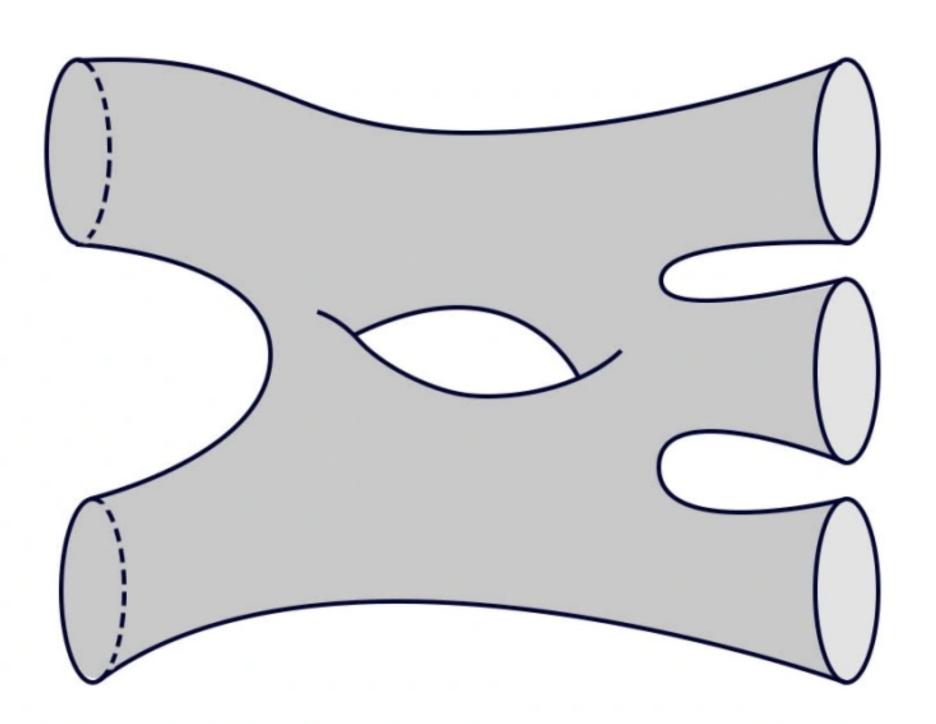


Time Evolution of a String

• The number of holes g is called the **genus** of the surface.

The number of initial plus final strings n is called the boundary components

$$g = 1, n = 5$$

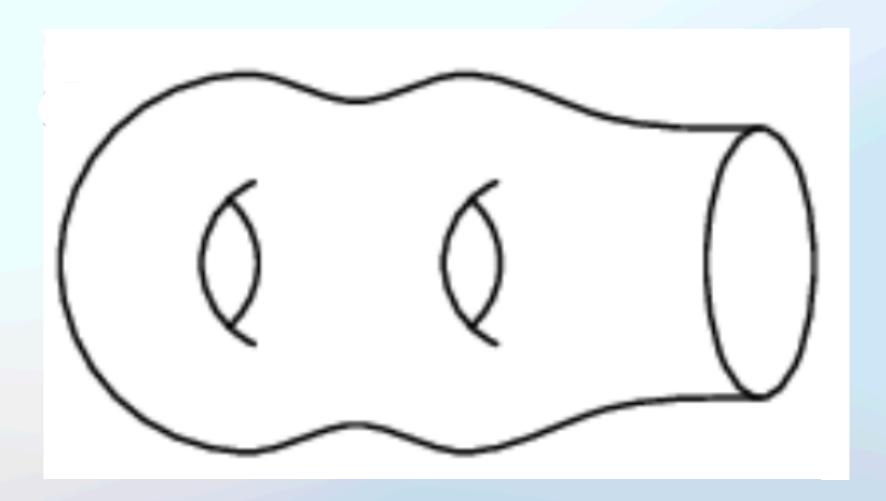


Time Evolution of a String

• The number of holes g is called the **genus** of the surface.

The number of initial plus final strings n is called the boundary components

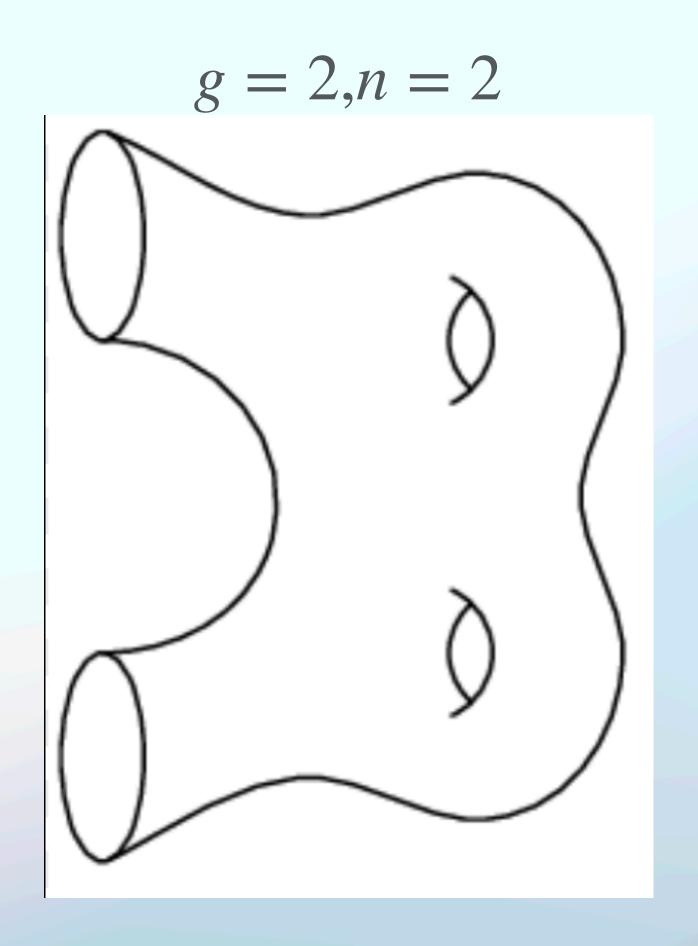
$$g = 2, n = 1$$



Time Evolution of a String

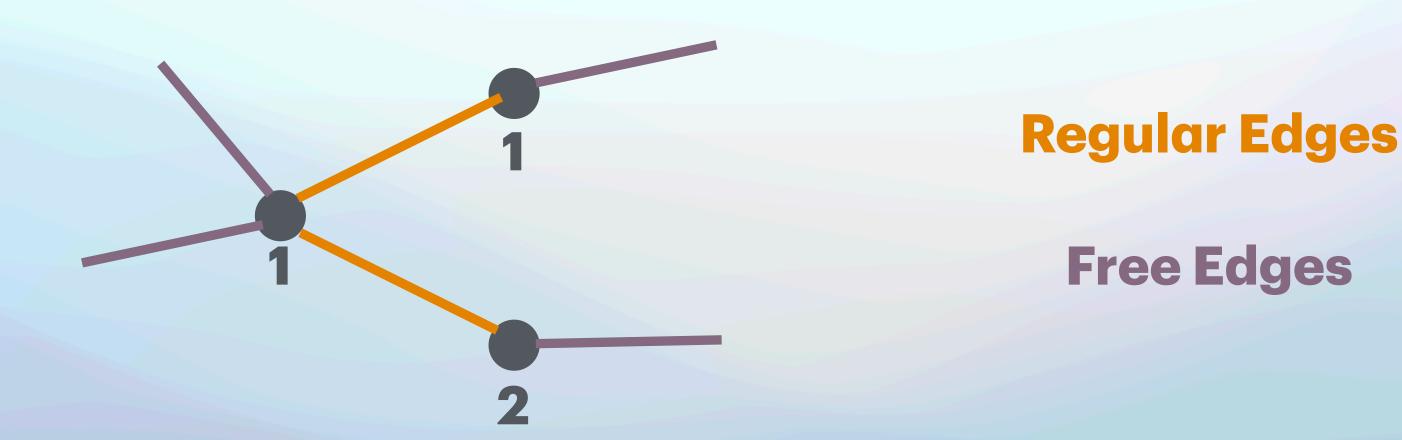
• The number of holes g is called the **genus** of the surface.

The number of initial plus final strings n is called the boundary components



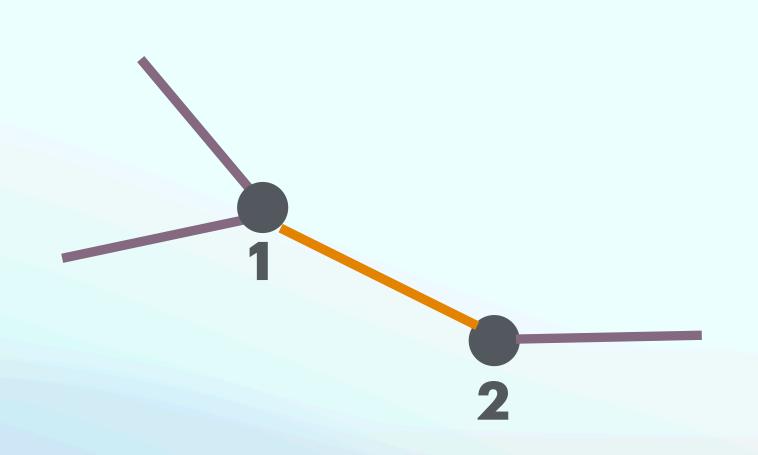
Feynman Diagrams

- Feynman expansions list all possible ways strings can evolve generating the same surface. That means the same genus, and number of boundaries.
- To simplify the job, these surfaces are represented as graphs.
- A graph is a set of vertices connected by edges. Each vertex has an associated number.
 Some edges are connected just to a single vertex. These are called free edges.

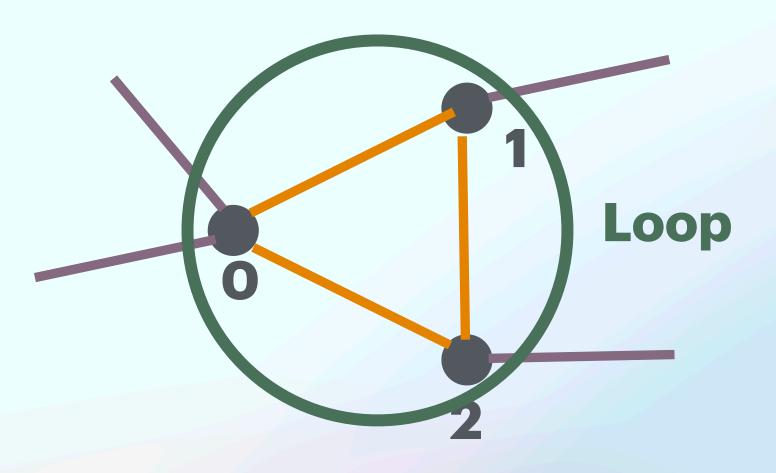


Feynman Diagrams

• The **genus** of a graph is the sum of the values at all vertices, **plus** the number of loops



$$g = 1 + 2$$

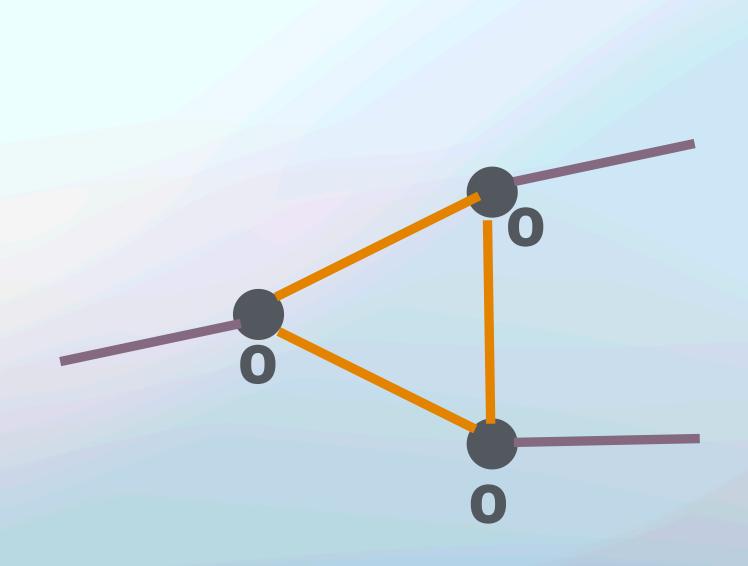


$$g = 0 + 2 + 1 + 1$$

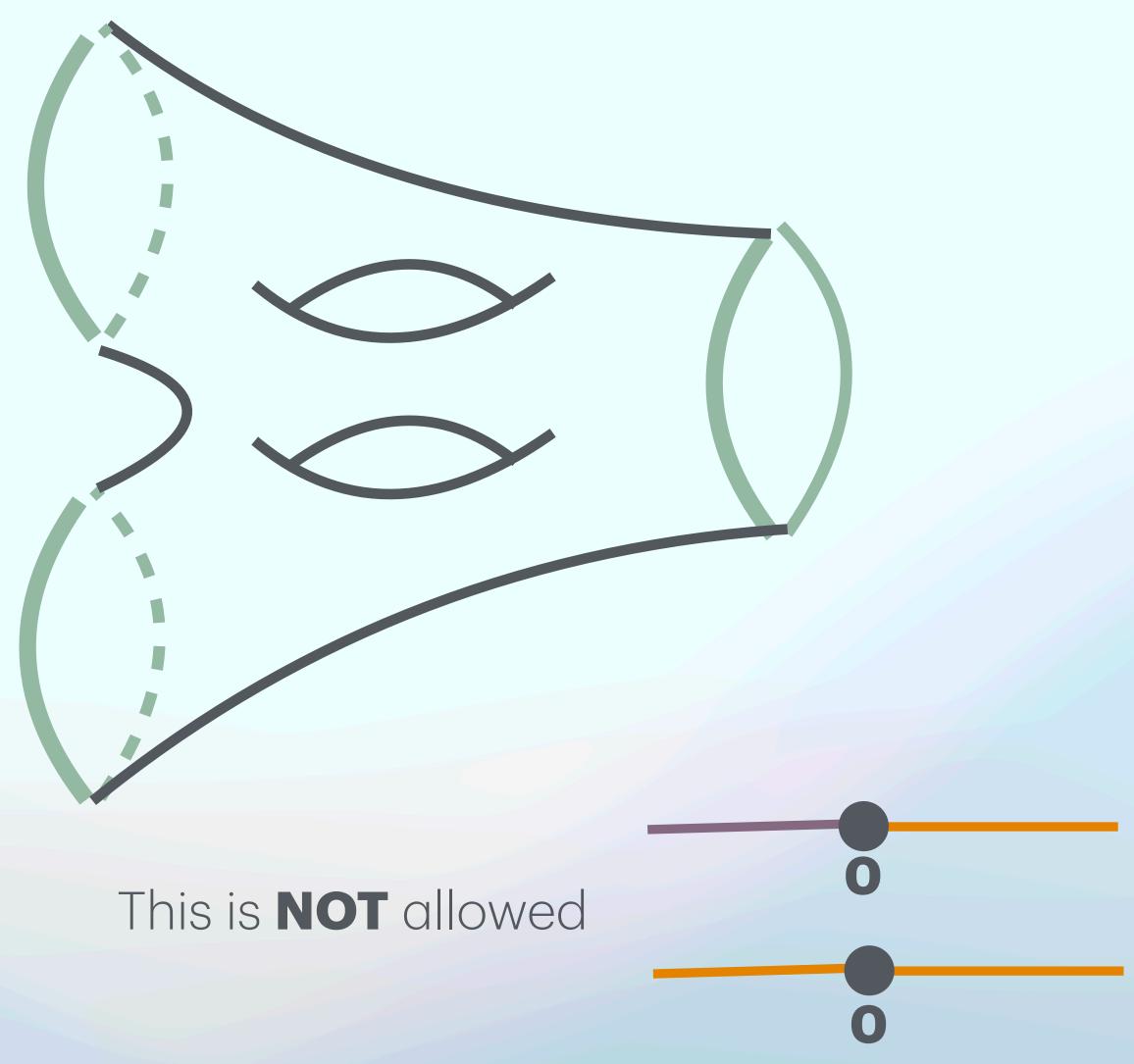
Translating between surfaces and graphs

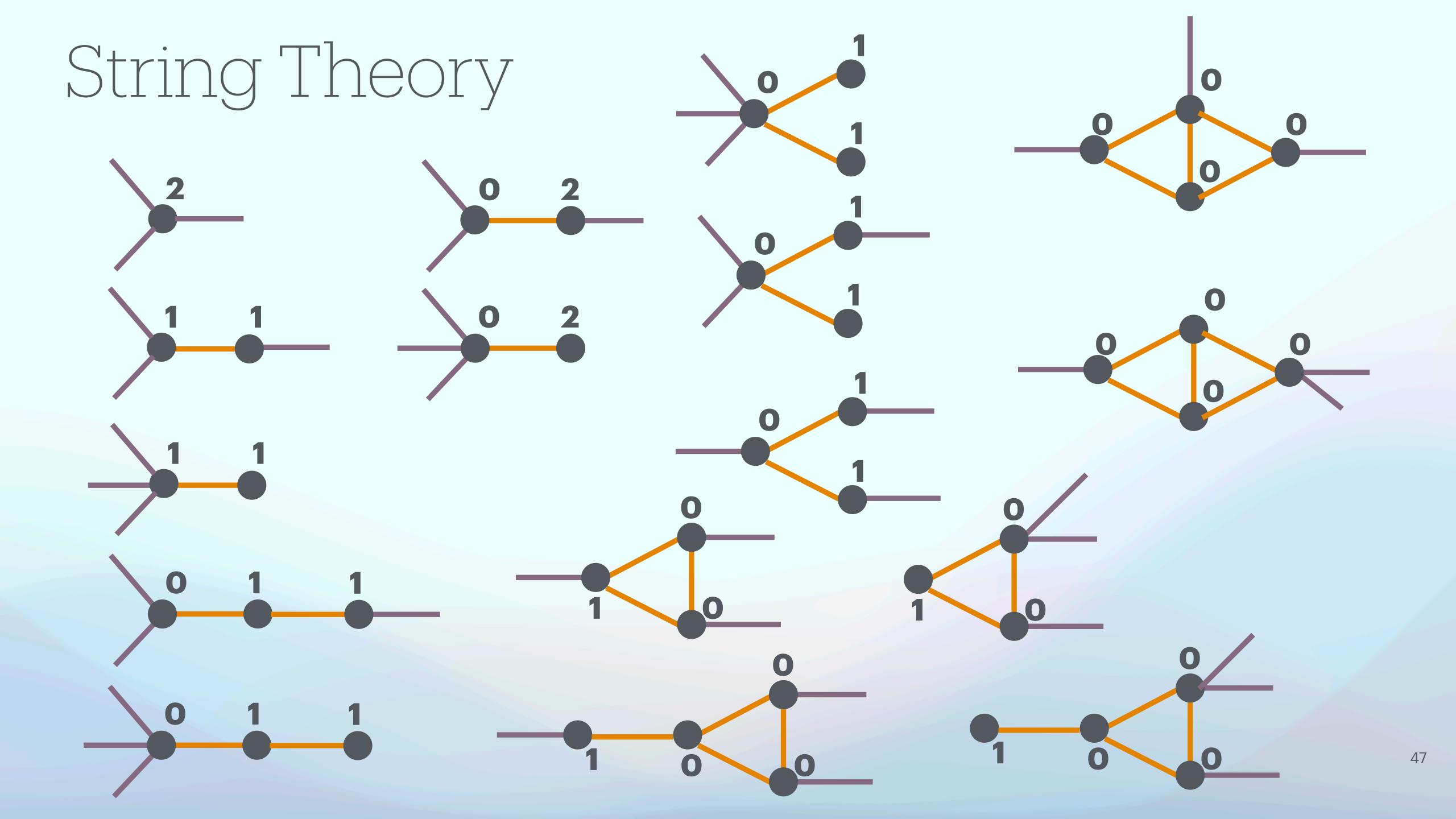
- A surface of genus ${\it g}$ and ${\it n}$ boundaries, can be represented by several graphs of genus ${\it g}$

and n free edges.



Find all graphs corresponding to this surface





Importance of Feynman Expansions

Feynman graph expansion provides a powerful framework for systematically calculating
particle interaction probabilities in quantum field theories. By summing over all relevant
diagrams and using the corresponding Feynman rules, physicists can make precise
predictions about the outcomes of particle interactions.

Having a concrete graphical way to enumerate this is essential for the calculations.

Conclusion

- Enumerative Geometry problems are often "easy" to state, but hard to answer
- Deeply connected to combinatorics, graph theory, physics
- Still an active field of research (although many concepts are "ancient")
- Email me if you want to learn more: rguigo@math.harvard.edu

Thanks for listening!